Package: itsadug 2.4.1
Jacolien van Rij
itsadug: Interpreting Time Series and Autocorrelated Data Using GAMMs
GAMM (Generalized Additive Mixed Modeling; Lin & Zhang, 1999) as implemented in the R package 'mgcv' (Wood, S.N., 2006; 2011) is a nonlinear regression analysis which is particularly useful for time course data such as EEG, pupil dilation, gaze data (eye tracking), and articulography recordings, but also for behavioral data such as reaction times and response data. As time course measures are sensitive to autocorrelation problems, GAMMs implements methods to reduce the autocorrelation problems. This package includes functions for the evaluation of GAMM models (e.g., model comparisons, determining regions of significance, inspection of autocorrelational structure in residuals) and interpreting of GAMMs (e.g., visualization of complex interactions, and contrasts).
Authors:
itsadug_2.4.1.tar.gz
itsadug_2.4.1.zip(r-4.5)itsadug_2.4.1.zip(r-4.4)itsadug_2.4.1.zip(r-4.3)
itsadug_2.4.1.tgz(r-4.4-any)itsadug_2.4.1.tgz(r-4.3-any)
itsadug_2.4.1.tar.gz(r-4.5-noble)itsadug_2.4.1.tar.gz(r-4.4-noble)
itsadug_2.4.1.tgz(r-4.4-emscripten)itsadug_2.4.1.tgz(r-4.3-emscripten)
itsadug.pdf |itsadug.html✨
itsadug/json (API)
NEWS
# Install 'itsadug' in R: |
install.packages('itsadug', repos = c('https://jacolien.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:34abd8a7d8. Checks:OK: 5 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 18 2024 |
R-4.5-win | NOTE | Oct 18 2024 |
R-4.5-linux | NOTE | Oct 18 2024 |
R-4.4-win | OK | Oct 18 2024 |
R-4.4-mac | OK | Oct 18 2024 |
R-4.3-win | OK | Oct 18 2024 |
R-4.3-mac | OK | Oct 18 2024 |
Exports:acf_n_plotsacf_plotacf_residcheck_residcompareMLconvertNonAlphanumericcorfitderive_timeseriesdiagnosticsdiff_termsdispersionfadeRugfind_differencefvisgamgamtabsget_coefsget_differenceget_fittedget_modeltermget_pca_predictionsget_predictionsget_randominfoinfoMessagesinspect_randommissing_estmodeledfobservationsplot_dataplot_diffplot_diff2plot_modelfitplot_parametricplot_pca_surfaceplot_smoothplot_topoprint_summarypvisgamrefLevelsreport_statsres_dfresid_gamrug_modelstart_eventstart_value_rhosummary_datatimeBinswald_gam
Dependencies:latticeMatrixmgcvnlmeplotfunctions
Checking for and handling autocorrelation
Rendered fromacf.Rmd
usingknitr::rmarkdown
on Oct 18 2024.Last update: 2020-04-29
Started: 2015-07-02
Quick overview of plot functions
Rendered fromoverview.Rmd
usingknitr::rmarkdown
on Oct 18 2024.Last update: 2020-04-29
Started: 2015-02-27
Testing for significance
Rendered fromtest.Rmd
usingknitr::rmarkdown
on Oct 18 2024.Last update: 2020-04-29
Started: 2016-03-20
Visual inspection of GAMM models
Rendered frominspect.Rmd
usingknitr::rmarkdown
on Oct 18 2024.Last update: 2020-04-29
Started: 2016-03-20