Title: | Various Functions to Facilitate Visualization of Data and Analysis |
---|---|
Description: | When analyzing data, plots are a helpful tool for visualizing data and interpreting statistical models. This package provides a set of simple tools for building plots incrementally, starting with an empty plot region, and adding bars, data points, regression lines, error bars, gradient legends, density distributions in the margins, and even pictures. The package builds further on R graphics by simply combining functions and settings in order to reduce the amount of code to produce for the user. As a result, the package does not use formula input or special syntax, but can be used in combination with default R plot functions. Note: Most of the functions were part of the package 'itsadug', which is now split in two packages: 1. the package 'itsadug', which contains the core functions for visualizing and evaluating nonlinear regression models, and 2. the package 'plotfunctions', which contains more general plot functions. |
Authors: | Jacolien van Rij [aut, cre] |
Maintainer: | Jacolien van Rij <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.4 |
Built: | 2024-11-19 05:10:48 UTC |
Source: | https://github.com/cran/plotfunctions |
Adding bars to an existing plot.
add_bars(x, y, y0 = NULL, width = 1, horiz = FALSE, ...)
add_bars(x, y, y0 = NULL, width = 1, horiz = FALSE, ...)
x |
Numeric vector with x-positions of bars. |
y |
Numeric vector with height of the bars. |
y0 |
Optional numeric value or vector with the onset(s) of the bars. When \codey0 is not specified, the lowest value of the y-axis is used. |
width |
Numeric value, determining the width of the bars in units of the x-axis. |
horiz |
Logical value: whether or not to plot horizontal bars. Defaults to FALSE. |
... |
Other arguments for plotting, see \code\link[graphics]par. |
Jacolien van Rij
Other Functions for plotting:
addInterval()
,
add_n_points()
,
alphaPalette()
,
alpha()
,
check_normaldist()
,
color_contour()
,
dotplot_error()
,
drawDevArrows()
,
emptyPlot()
,
errorBars()
,
fill_area()
,
getCoords()
,
getFigCoords()
,
getProps()
,
gradientLegend()
,
legend_margin()
,
marginDensityPlot()
,
plot_error()
,
plot_image()
,
plotsurface()
,
sortBoxplot()
# hypothetical experiment: adults = stats::rpois(100, lambda = 5) children = stats::rpois(100, lambda = 4) newd <- data.frame(Adults = table( factor(adults, levels=0:15) ), Children = table( factor(children, levels=0:15) ) ) newd <- newd[,c(1,2,4)] names(newd)[1] <- 'value' # barplot of Adults: b <- barplot(newd$Adults.Freq, beside=TRUE, names.arg=newd$value, border=NA, ylim=c(0,30)) # overlay Children measures: add_bars(b, newd$Children.Freq, col='red', density=25, xpd=TRUE) # variants: b <- barplot(newd$Adults.Freq, beside=TRUE, names.arg=newd$value, border=NA, ylim=c(0,30)) add_bars(b+.1, newd$Children.Freq, width=.85, col=alpha('red'), border=NA, xpd=TRUE) emptyPlot(c(-30,30), c(0,15), v0=0, ylab='Condition') add_bars(-1*newd$Children.Freq, 0:15, y0=0, col=alpha('blue'), border='blue', horiz=TRUE) add_bars(newd$Adults.Freq, 0:15, y0=0, col=alpha('red'), border='red', horiz=TRUE) mtext(c('Children', 'Adults'), side=3, at=c(-15,15), line=1, cex=1.25, font=2) # adding shadow: b <- barplot(newd$Adults.Freq, beside=TRUE, names.arg=newd$value, width=.9, col='black', border=NA) add_bars(b+.2, newd$Adults.Freq+.2, y0=.2, width=.9, col=alpha('black', f=.2), border=NA, xpd=TRUE)
# hypothetical experiment: adults = stats::rpois(100, lambda = 5) children = stats::rpois(100, lambda = 4) newd <- data.frame(Adults = table( factor(adults, levels=0:15) ), Children = table( factor(children, levels=0:15) ) ) newd <- newd[,c(1,2,4)] names(newd)[1] <- 'value' # barplot of Adults: b <- barplot(newd$Adults.Freq, beside=TRUE, names.arg=newd$value, border=NA, ylim=c(0,30)) # overlay Children measures: add_bars(b, newd$Children.Freq, col='red', density=25, xpd=TRUE) # variants: b <- barplot(newd$Adults.Freq, beside=TRUE, names.arg=newd$value, border=NA, ylim=c(0,30)) add_bars(b+.1, newd$Children.Freq, width=.85, col=alpha('red'), border=NA, xpd=TRUE) emptyPlot(c(-30,30), c(0,15), v0=0, ylab='Condition') add_bars(-1*newd$Children.Freq, 0:15, y0=0, col=alpha('blue'), border='blue', horiz=TRUE) add_bars(newd$Adults.Freq, 0:15, y0=0, col=alpha('red'), border='red', horiz=TRUE) mtext(c('Children', 'Adults'), side=3, at=c(-15,15), line=1, cex=1.25, font=2) # adding shadow: b <- barplot(newd$Adults.Freq, beside=TRUE, names.arg=newd$value, width=.9, col='black', border=NA) add_bars(b+.2, newd$Adults.Freq+.2, y0=.2, width=.9, col=alpha('black', f=.2), border=NA, xpd=TRUE)
Add groups of points to a plot
add_n_points(x, y, n, horiz = TRUE, width = NULL, sep = NULL, plot = TRUE, ...)
add_n_points(x, y, n, horiz = TRUE, width = NULL, sep = NULL, plot = TRUE, ...)
x |
average X position of points to plot, |
y |
average Y position of points to plot, |
n |
number of points to plot (integer). |
horiz |
Logical: whether or not to plot the sequence of point in horizontal direction (x-axis). Defaults to TRUE, the points are plotted in horizontal direction. |
width |
Numeric value: width that sequence of points can take. |
sep |
Numeric value: separation between sequences of points. Separation reduces the width. If the value is smaller, the sequences take more space. |
plot |
Logical: whether or not to add the points to the plot. Defaults to true. If set to false, the x- and y-coordinates of the points are returned in a list. |
... |
Optional graphical parameters (see |
Jacolien van Rij
Other Functions for plotting:
addInterval()
,
add_bars()
,
alphaPalette()
,
alpha()
,
check_normaldist()
,
color_contour()
,
dotplot_error()
,
drawDevArrows()
,
emptyPlot()
,
errorBars()
,
fill_area()
,
getCoords()
,
getFigCoords()
,
getProps()
,
gradientLegend()
,
legend_margin()
,
marginDensityPlot()
,
plot_error()
,
plot_image()
,
plotsurface()
,
sortBoxplot()
s <- table(cars$speed) d <- tapply(cars$dist, list(cars$speed), mean) emptyPlot(range(as.numeric(names(s))), range(d), xlab='dist', ylab='mean speed') add_n_points(as.numeric(names(s)), d, s, pch='*') # decrease space between groups of points: emptyPlot(range(as.numeric(names(s))), range(d), xlab='dist', ylab='mean speed') add_n_points(as.numeric(names(s)), d, s, sep=0) # decrease width of groups of points: emptyPlot(range(as.numeric(names(s))), range(d), xlab='dist', ylab='mean speed') add_n_points(as.numeric(names(s)), d, s, width=0.8) # horizontal vs vertical: emptyPlot(range(d),range(as.numeric(names(s))), ylab='dist', xlab='mean speed') add_n_points(d, as.numeric(names(s)), s, horiz=FALSE)
s <- table(cars$speed) d <- tapply(cars$dist, list(cars$speed), mean) emptyPlot(range(as.numeric(names(s))), range(d), xlab='dist', ylab='mean speed') add_n_points(as.numeric(names(s)), d, s, pch='*') # decrease space between groups of points: emptyPlot(range(as.numeric(names(s))), range(d), xlab='dist', ylab='mean speed') add_n_points(as.numeric(names(s)), d, s, sep=0) # decrease width of groups of points: emptyPlot(range(as.numeric(names(s))), range(d), xlab='dist', ylab='mean speed') add_n_points(as.numeric(names(s)), d, s, width=0.8) # horizontal vs vertical: emptyPlot(range(d),range(as.numeric(names(s))), ylab='dist', xlab='mean speed') add_n_points(d, as.numeric(names(s)), s, horiz=FALSE)
Add horizontal or vertical interval indications. This function can also be used to plot asymmetric (non-parametric) error bars or confidence intervals. Basically a wrapper around arrows.
addInterval( pos, lowVals, highVals, horiz = TRUE, minmax = NULL, length = 0.05, ... )
addInterval( pos, lowVals, highVals, horiz = TRUE, minmax = NULL, length = 0.05, ... )
pos |
Vector with x- or y-values (depending on |
lowVals |
Vector with low values, . |
highVals |
Vector with errors or confidence bands. |
horiz |
Logical: whether or not to plot the intervals horizontally. Defaults to TRUE (horizontal intervals). |
minmax |
Optional argument, vector with two values indicating the minimum and maximum value for the error bars. If NULL (default) the error bars are not corrected. |
length |
Number, size of the edges in inches. |
... |
Optional graphical parameters (see |
Jacolien van Rij
Other Functions for plotting:
add_bars()
,
add_n_points()
,
alphaPalette()
,
alpha()
,
check_normaldist()
,
color_contour()
,
dotplot_error()
,
drawDevArrows()
,
emptyPlot()
,
errorBars()
,
fill_area()
,
getCoords()
,
getFigCoords()
,
getProps()
,
gradientLegend()
,
legend_margin()
,
marginDensityPlot()
,
plot_error()
,
plot_image()
,
plotsurface()
,
sortBoxplot()
emptyPlot(1000,5, xlab='Time', ylab='Y') # add interval indication for Time=200 to Time=750: addInterval(1, 200, 750, lwd=2, col='red') # zero-length intervals also should work: addInterval(pos=521, lowVals=c(1.35, 1.5, 4.33), highVals=c(1.15,1.5, 4.05), horiz=FALSE, length=.1, lwd=4) # combine with getCoords for consistent positions with different axes: par(mfrow=c(2,2)) # 1st plot: emptyPlot(1000,c(-1,5), h0=0) addInterval(getCoords(.1,side=2), 200,800, col='red', lwd=2) addInterval(getCoords(.5,side=1), 1,4, horiz=FALSE, col='blue', length=.15, angle=100, lwd=4) abline(h=getCoords(.1, side=2), lty=3, col='red', xpd=TRUE) abline(v=getCoords(.5, side=1), lty=3, col='blue', xpd=TRUE) # 2nd plot: emptyPlot(1000,c(-250, 120), h0=0) addInterval(getCoords(.1,side=2), 750,1200, col='red', lwd=2, minmax=c(0,1000)) abline(h=getCoords(.1, side=2), lty=3, col='red', xpd=TRUE) # 3rd plot: emptyPlot(c(-50,50),c(20,120), h0=0) addInterval(getCoords(.5,side=1), 80,120, horiz=FALSE, col='blue', code=2, length=.15, lwd=4, lend=1) abline(v=getCoords(.5, side=1), lty=3, col='blue', xpd=TRUE) # Alternative boxplots: b <- boxplot(count ~ spray, data = InsectSprays, plot=FALSE)$stats emptyPlot(c(1,6), range(b[c(1,5),]), h0=0) addInterval(1:6, b[1,], b[5,], horiz=FALSE) # no end lines: addInterval(1:6, b[2,], b[4,], horiz=FALSE, lwd=8, length=0, lend=2) # no error with zero-length intervals: addInterval(1:6, b[3,], b[3,], horiz=FALSE, lwd=2, length=.1, lend=2) # reset par(mfrow=c(1,1))
emptyPlot(1000,5, xlab='Time', ylab='Y') # add interval indication for Time=200 to Time=750: addInterval(1, 200, 750, lwd=2, col='red') # zero-length intervals also should work: addInterval(pos=521, lowVals=c(1.35, 1.5, 4.33), highVals=c(1.15,1.5, 4.05), horiz=FALSE, length=.1, lwd=4) # combine with getCoords for consistent positions with different axes: par(mfrow=c(2,2)) # 1st plot: emptyPlot(1000,c(-1,5), h0=0) addInterval(getCoords(.1,side=2), 200,800, col='red', lwd=2) addInterval(getCoords(.5,side=1), 1,4, horiz=FALSE, col='blue', length=.15, angle=100, lwd=4) abline(h=getCoords(.1, side=2), lty=3, col='red', xpd=TRUE) abline(v=getCoords(.5, side=1), lty=3, col='blue', xpd=TRUE) # 2nd plot: emptyPlot(1000,c(-250, 120), h0=0) addInterval(getCoords(.1,side=2), 750,1200, col='red', lwd=2, minmax=c(0,1000)) abline(h=getCoords(.1, side=2), lty=3, col='red', xpd=TRUE) # 3rd plot: emptyPlot(c(-50,50),c(20,120), h0=0) addInterval(getCoords(.5,side=1), 80,120, horiz=FALSE, col='blue', code=2, length=.15, lwd=4, lend=1) abline(v=getCoords(.5, side=1), lty=3, col='blue', xpd=TRUE) # Alternative boxplots: b <- boxplot(count ~ spray, data = InsectSprays, plot=FALSE)$stats emptyPlot(c(1,6), range(b[c(1,5),]), h0=0) addInterval(1:6, b[1,], b[5,], horiz=FALSE) # no end lines: addInterval(1:6, b[2,], b[4,], horiz=FALSE, lwd=8, length=0, lend=2) # no error with zero-length intervals: addInterval(1:6, b[3,], b[3,], horiz=FALSE, lwd=2, length=.1, lend=2) # reset par(mfrow=c(1,1))
Wrapper around adjustcolor
.
alpha(x, f = 0.5)
alpha(x, f = 0.5)
x |
A color or a vector with color values. |
f |
A number for adjusting the transparency ranging from 0 (completely transparent) to 1 (not transparent). |
Does not always work for x11 panels.
Other Functions for plotting:
addInterval()
,
add_bars()
,
add_n_points()
,
alphaPalette()
,
check_normaldist()
,
color_contour()
,
dotplot_error()
,
drawDevArrows()
,
emptyPlot()
,
errorBars()
,
fill_area()
,
getCoords()
,
getFigCoords()
,
getProps()
,
gradientLegend()
,
legend_margin()
,
marginDensityPlot()
,
plot_error()
,
plot_image()
,
plotsurface()
,
sortBoxplot()
emptyPlot(100,100, h=50, v=50) rect(25,25,75,75, col=alpha('red',f=1)) rect(35,41,63,81, col=alpha(rgb(0,1,.5),f=.25), border=alpha(rgb(0,1,.5), f=.65), lwd=4) emptyPlot(1,1, axes=FALSE, main='Tunnel of 11 squares') center <- c(.75, .25) mycol <- 'steelblue' for(i in seq(0,1,by=.1)){ rect(center[1]-center[1]*(1.1-i), center[2]-center[2]*(1.1-i), center[1]+(1-center[1])*(1.1-i), center[2]+(1-center[2])*(1.1-i), col=alpha(mycol, f=i), border=mycol, lty=1, lwd=.5, xpd=TRUE) } axis(1, at=center[1]-center[1]*(1.1-seq(0,1,by=.1)), labels=seq(0,1,by=.1)) # see alphaPalette for an elaboration of this example
emptyPlot(100,100, h=50, v=50) rect(25,25,75,75, col=alpha('red',f=1)) rect(35,41,63,81, col=alpha(rgb(0,1,.5),f=.25), border=alpha(rgb(0,1,.5), f=.65), lwd=4) emptyPlot(1,1, axes=FALSE, main='Tunnel of 11 squares') center <- c(.75, .25) mycol <- 'steelblue' for(i in seq(0,1,by=.1)){ rect(center[1]-center[1]*(1.1-i), center[2]-center[2]*(1.1-i), center[1]+(1-center[1])*(1.1-i), center[2]+(1-center[2])*(1.1-i), col=alpha(mycol, f=i), border=mycol, lty=1, lwd=.5, xpd=TRUE) } axis(1, at=center[1]-center[1]*(1.1-seq(0,1,by=.1)), labels=seq(0,1,by=.1)) # see alphaPalette for an elaboration of this example
Generate an color palette with changing transparency.
alphaPalette(x, f.seq, n = NULL)
alphaPalette(x, f.seq, n = NULL)
x |
A vector with color values. Could be a single value specifying a single color palette, ranging in transparency values, or a vector with different colors. |
f.seq |
A vector with transparency values, ranging from 0 to 1. |
n |
Optional argument. A number specifying the number of colors in the
palette. If |
A vector with color values.
On Linux x11
devices may not support transparency.
In that case, a solution might be to write the plots immediately to a file
using functions such as pdf
, or png
.
Jacolien van Rij
palette
, colorRampPalette
,
adjustcolor
, convertColor
Other Functions for plotting:
addInterval()
,
add_bars()
,
add_n_points()
,
alpha()
,
check_normaldist()
,
color_contour()
,
dotplot_error()
,
drawDevArrows()
,
emptyPlot()
,
errorBars()
,
fill_area()
,
getCoords()
,
getFigCoords()
,
getProps()
,
gradientLegend()
,
legend_margin()
,
marginDensityPlot()
,
plot_error()
,
plot_image()
,
plotsurface()
,
sortBoxplot()
# a palette of 5 white transparent colors: alphaPalette('white', f.seq=1:5/5) # the same palette: alphaPalette('white', f.seq=c(.2,1), n=5) # a palette with 10 colors blue, yellow and red, that differ in transparency alphaPalette(c('blue', 'yellow', 'red'), f.seq=c(0.1,.8), n=10) emptyPlot(1,1, axes=FALSE, main='Tunnel of 11 squares') mycol <- 'steelblue' center <- c(.75, .25) i = seq(0,1,by=.1) fillcol <- alphaPalette(c(mycol, 'black'), f.seq=i) linecol <- alphaPalette(mycol, f.seq=1-i) rect(center[1]-center[1]*(1.1-i), center[2]-center[2]*(1.1-i), center[1]+(1-center[1])*(1.1-i), center[2]+(1-center[2])*(1.1-i), col=fillcol, border=linecol, lty=1, lwd=1, xpd=TRUE)
# a palette of 5 white transparent colors: alphaPalette('white', f.seq=1:5/5) # the same palette: alphaPalette('white', f.seq=c(.2,1), n=5) # a palette with 10 colors blue, yellow and red, that differ in transparency alphaPalette(c('blue', 'yellow', 'red'), f.seq=c(0.1,.8), n=10) emptyPlot(1,1, axes=FALSE, main='Tunnel of 11 squares') mycol <- 'steelblue' center <- c(.75, .25) i = seq(0,1,by=.1) fillcol <- alphaPalette(c(mycol, 'black'), f.seq=i) linecol <- alphaPalette(mycol, f.seq=1-i) rect(center[1]-center[1]*(1.1-i), center[2]-center[2]*(1.1-i), center[1]+(1-center[1])*(1.1-i), center[2]+(1-center[2])*(1.1-i), col=fillcol, border=linecol, lty=1, lwd=1, xpd=TRUE)
Compare distribution of data with normal distribution.
check_normaldist( res, col = "red", col.normal = "black", legend.pos = "topright", legend.label = "data", ... )
check_normaldist( res, col = "red", col.normal = "black", legend.pos = "topright", legend.label = "data", ... )
res |
Vector with residuals or other data for which the distribution . |
col |
Color for filling the area. Default is black. |
col.normal |
Color for shading and line of normal distribution. |
legend.pos |
Position of legend, can be string (e.g., 'topleft') or an
|
legend.label |
Text string, label for plotted data distribution. |
... |
Optional arguments for the lines. See |
Assumes centered data as input.
Jacolien van Rij
Other Functions for plotting:
addInterval()
,
add_bars()
,
add_n_points()
,
alphaPalette()
,
alpha()
,
color_contour()
,
dotplot_error()
,
drawDevArrows()
,
emptyPlot()
,
errorBars()
,
fill_area()
,
getCoords()
,
getFigCoords()
,
getProps()
,
gradientLegend()
,
legend_margin()
,
marginDensityPlot()
,
plot_error()
,
plot_image()
,
plotsurface()
,
sortBoxplot()
set.seed(123) # normal distribution: test <- rnorm(1000) check_normaldist(test) # t-distribution: test <- rt(1000, df=5) check_normaldist(test) # skewed data, e.g., reaction times: test <- exp(rnorm(1000, mean=.500, sd=.25)) check_normaldist(test) # center first: check_normaldist(scale(test)) # binomial distribution: test <- rbinom(1000, 1, .3) check_normaldist(test) # count data: test <- rbinom(1000, 100, .3) check_normaldist(test)
set.seed(123) # normal distribution: test <- rnorm(1000) check_normaldist(test) # t-distribution: test <- rt(1000, df=5) check_normaldist(test) # skewed data, e.g., reaction times: test <- exp(rnorm(1000, mean=.500, sd=.25)) check_normaldist(test) # center first: check_normaldist(scale(test)) # binomial distribution: test <- rbinom(1000, 1, .3) check_normaldist(test) # count data: test <- rbinom(1000, 100, .3) check_normaldist(test)
This function is a wrapper around image
and contour
. See vignette('plotfunctions')
for an example of how you could use image
and
contour
.
color_contour( x = seq(0, 1, length.out = nrow(z)), y = seq(0, 1, length.out = ncol(z)), z, main = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL, zlim = NULL, col = NULL, color = topo.colors(50), nCol = 50, add.color.legend = TRUE, ... )
color_contour( x = seq(0, 1, length.out = nrow(z)), y = seq(0, 1, length.out = ncol(z)), z, main = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL, zlim = NULL, col = NULL, color = topo.colors(50), nCol = 50, add.color.legend = TRUE, ... )
x |
Locations of grid lines at which the values in z are measured. These must be in ascending order. By default, equally spaced values from 0 to 1 are used. If x is a list, its components x$x and x$y are used for x and y, respectively. If the list has component z this is used for z. |
y |
Locations of grid lines at which the values in z are measured. |
z |
a matrix containing the values to be plotted (NAs are allowed). Note that x can be used instead of z for convenience. |
main |
Text string, an overall title for the plot. |
xlab |
Label for x axis. Default is name of first |
ylab |
Label for y axis. Default is name of second |
xlim |
x-limits for the plot. |
ylim |
y-limits for the plot. |
zlim |
z-limits for the plot. |
col |
Color for the contour lines and labels. |
color |
a list of colors such as that generated by
|
nCol |
The number of colors to use in color schemes. |
add.color.legend |
Logical: whether or not to add a color legend.
Default is TRUE. If FALSE (omitted), one could use the function
|
... |
Jacolien van Rij
image
, contour
,
filled.contour
. See plotsurface
for plotting model predictions using color_contour
.
Other Functions for plotting:
addInterval()
,
add_bars()
,
add_n_points()
,
alphaPalette()
,
alpha()
,
check_normaldist()
,
dotplot_error()
,
drawDevArrows()
,
emptyPlot()
,
errorBars()
,
fill_area()
,
getCoords()
,
getFigCoords()
,
getProps()
,
gradientLegend()
,
legend_margin()
,
marginDensityPlot()
,
plot_error()
,
plot_image()
,
plotsurface()
,
sortBoxplot()
# Volcano example of R (package datasets) color_contour(z=volcano) # change color and lines: color_contour(z=volcano, color='terrain', col=alpha(1), lwd=2, lty=5) # change x-axis values and zlim: color_contour(x=seq(500,700, length=nrow(volcano)), z=volcano, color='terrain', col=alpha(1), lwd=2, zlim=c(0,200)) # compare with similar functions: filled.contour(volcano, color.palette=terrain.colors) # without contour lines: color_contour(z=volcano, color='terrain', lwd=0, drawlabels=FALSE) # without background: color_contour(z=volcano, color=NULL, add.color.legend=FALSE)
# Volcano example of R (package datasets) color_contour(z=volcano) # change color and lines: color_contour(z=volcano, color='terrain', col=alpha(1), lwd=2, lty=5) # change x-axis values and zlim: color_contour(x=seq(500,700, length=nrow(volcano)), z=volcano, color='terrain', col=alpha(1), lwd=2, zlim=c(0,200)) # compare with similar functions: filled.contour(volcano, color.palette=terrain.colors) # without contour lines: color_contour(z=volcano, color='terrain', lwd=0, drawlabels=FALSE) # without background: color_contour(z=volcano, color=NULL, add.color.legend=FALSE)
Replacing separators (for example, decimal and thousand separators).
convertFile( filename, symbol1 = NULL, symbol2 = NULL, newsymbol1 = "", newsymbol2 = "", sep = ";", newsep = NULL, header = TRUE, columns = NULL, outputfile = gsub("^(.*)(\\.)([^\\.]*)$", "\\1_new.\\3", filename), fixed.s1 = TRUE, fixed.s2 = TRUE, fixed.sep = TRUE, ... )
convertFile( filename, symbol1 = NULL, symbol2 = NULL, newsymbol1 = "", newsymbol2 = "", sep = ";", newsep = NULL, header = TRUE, columns = NULL, outputfile = gsub("^(.*)(\\.)([^\\.]*)$", "\\1_new.\\3", filename), fixed.s1 = TRUE, fixed.s2 = TRUE, fixed.sep = TRUE, ... )
filename |
String: filename (including path if necessary) of input file. |
symbol1 |
String: symbol to replace by |
symbol2 |
String: second symbol to replace by |
newsymbol1 |
String: symbol to replace |
newsymbol2 |
String: symbol to replace |
sep |
String: column separator. Could be also used to replace symbols
in the header and data by |
newsep |
String: symbol to replace |
header |
Logical: whether or not there is header line. |
columns |
Vector with numerical values: indices of columns in which symbols need to be replaced. |
outputfile |
String: name of outputfile. |
fixed.s1 |
Logical: whether or not to treat |
fixed.s2 |
Logical: whether or not to treat |
fixed.sep |
Logical: whether or not to treat |
... |
Additional parameters for |
Jacolien van Rij
## Not run: # normally, the function call would look something like this: convertFile('example1.csv', symbol1=',', symbol2='.', sep='\t', newsymbol1='.', newsymbol2='') # But as we are not sure that the file example1.csv is available, # we need to do something a little more complicated to point to # the file 'example1.csv' that comes with the package: # finding one of the example files from the package: file1 <- system.file('extdata', 'example1.csv', package = 'plotfunctions') # example 1: system.time({ convertFile(file1, symbol1=',', symbol2='.', newsymbol1='.', newsymbol2='', outputfile='example1_new.csv') }) # example 2: type 'yes' to overwrite the previous output file, # or specify a different filename in outputfile. system.time({ convertFile(file1, symbol1=',', symbol2='.', sep='\t', newsymbol1='.', newsymbol2='', columns=1:2, outputfile='example1_new.csv') }) # Example 1 takes less time, as it does not use read.table, # but just reads the file as text lines. However, the column # version could be useful when symbols should be replaced only # in specific columns. # Note that Example 2 writes the output with quotes, but this is # not a problem for read.table: dat <- read.table('example1_new.csv', header=TRUE, sep='\t', stringsAsFactors=FALSE) ## End(Not run)
## Not run: # normally, the function call would look something like this: convertFile('example1.csv', symbol1=',', symbol2='.', sep='\t', newsymbol1='.', newsymbol2='') # But as we are not sure that the file example1.csv is available, # we need to do something a little more complicated to point to # the file 'example1.csv' that comes with the package: # finding one of the example files from the package: file1 <- system.file('extdata', 'example1.csv', package = 'plotfunctions') # example 1: system.time({ convertFile(file1, symbol1=',', symbol2='.', newsymbol1='.', newsymbol2='', outputfile='example1_new.csv') }) # example 2: type 'yes' to overwrite the previous output file, # or specify a different filename in outputfile. system.time({ convertFile(file1, symbol1=',', symbol2='.', sep='\t', newsymbol1='.', newsymbol2='', columns=1:2, outputfile='example1_new.csv') }) # Example 1 takes less time, as it does not use read.table, # but just reads the file as text lines. However, the column # version could be useful when symbols should be replaced only # in specific columns. # Note that Example 2 writes the output with quotes, but this is # not a problem for read.table: dat <- read.table('example1_new.csv', header=TRUE, sep='\t', stringsAsFactors=FALSE) ## End(Not run)
Adjusted version of the a Cleveland dot plot implemented in
dotchart
with the option to add confidence
intervals.
dotplot_error( x, se.val = NULL, labels = NULL, groups = NULL, gdata = NULL, cex = par("cex"), pch = 21, gpch = 21, bg = "black", color = par("fg"), gcolor = par("fg"), lcolor = "gray", xlim = NULL, main = NULL, xlab = NULL, ylab = NULL, lwd = 1, ... )
dotplot_error( x, se.val = NULL, labels = NULL, groups = NULL, gdata = NULL, cex = par("cex"), pch = 21, gpch = 21, bg = "black", color = par("fg"), gcolor = par("fg"), lcolor = "gray", xlim = NULL, main = NULL, xlab = NULL, ylab = NULL, lwd = 1, ... )
x |
either a vector or matrix of numeric values (NAs are allowed). If x is a matrix the overall plot consists of juxtaposed dotplots for each row. Inputs which satisfy is.numeric(x) but not is.vector(x) || is.matrix( x) are coerced by as.numeric, with a warning. |
se.val |
a vector or matrix of numeric values representing the standard error or confidence bands. |
labels |
a vector of labels for each point. For vectors the default is to use names(x) and for matrices the row labels dimnames(x)[[1]]. |
groups |
an optional factor indicating how the elements of x are grouped. If x is a matrix, groups will default to the columns of x. |
gdata |
data values for the groups. This is typically a summary such as the median or mean of each group. |
cex |
the character size to be used. Setting cex to a value smaller than one can be a useful way of avoiding label overlap. Unlike many other graphics functions, this sets the actual size, not a multiple of par('cex'). |
pch |
the plotting character or symbol to be used. |
gpch |
the plotting character or symbol to be used for group values. |
bg |
the background color of plotting characters or symbols to be used; use par(bg= *) to set the background color of the whole plot. |
color |
the color(s) to be used for points and labels. |
gcolor |
the single color to be used for group labels and values. |
lcolor |
the color(s) to be used for the horizontal lines. |
xlim |
horizontal range for the plot, see plot.window, e.g. |
main |
overall title for the plot, see title. |
xlab |
x-axis annotation as in title. |
ylab |
y-axis annotation as in title. |
lwd |
with of error bars. |
... |
graphical parameters can also be specified as arguments
see |
This function is a slightly adjusted version of the function
dotchart
of the package graphics
version 3.1.1
Other Functions for plotting:
addInterval()
,
add_bars()
,
add_n_points()
,
alphaPalette()
,
alpha()
,
check_normaldist()
,
color_contour()
,
drawDevArrows()
,
emptyPlot()
,
errorBars()
,
fill_area()
,
getCoords()
,
getFigCoords()
,
getProps()
,
gradientLegend()
,
legend_margin()
,
marginDensityPlot()
,
plot_error()
,
plot_image()
,
plotsurface()
,
sortBoxplot()
# example InsectSprays from R datasets avg <- aggregate(count ~ spray, data=InsectSprays, mean) avg <- merge(avg, aggregate(count ~ spray, data=InsectSprays, sd), by='spray', all=TRUE) dotplot_error(avg$count.x, se.val=avg$count.y, labels=avg$spray) # we could add the type of spray to the averages: avg$type <- c(1,1,2,2,2,1) dotplot_error(avg$count.x, se.val=avg$count.y, groups=avg$type, labels=avg$spray)
# example InsectSprays from R datasets avg <- aggregate(count ~ spray, data=InsectSprays, mean) avg <- merge(avg, aggregate(count ~ spray, data=InsectSprays, sd), by='spray', all=TRUE) dotplot_error(avg$count.x, se.val=avg$count.y, labels=avg$spray) # we could add the type of spray to the averages: avg$type <- c(1,1,2,2,2,1) dotplot_error(avg$count.x, se.val=avg$count.y, groups=avg$type, labels=avg$spray)
Function for drawing arrows between different plot regions.
drawDevArrows( start, end = NULL, arrows = c("end", "start", "both", "none"), units = c("inch", "prop", "coords"), ... )
drawDevArrows( start, end = NULL, arrows = c("end", "start", "both", "none"), units = c("inch", "prop", "coords"), ... )
start |
The x and y coordinates of a set of points that define
the start points of the arrow(s), specified in a
list with x and y slots. Similar to |
end |
The x and y coordinates of a set of points that define the end points of the arrow(s), specified in a list with x and y slots. |
arrows |
On which end of the line to draw arrows: 'end' (default), 'start', 'both', 'none'. |
units |
Units in which x- and y-coordinates are provided: 'inch' (default), 'prop' (proportion), 'coords'. 'inch' and 'prop' are with respect to device region. |
... |
graphical parameters and parameters provided for
|
Jacolien van Rij
Other Functions for plotting:
addInterval()
,
add_bars()
,
add_n_points()
,
alphaPalette()
,
alpha()
,
check_normaldist()
,
color_contour()
,
dotplot_error()
,
emptyPlot()
,
errorBars()
,
fill_area()
,
getCoords()
,
getFigCoords()
,
getProps()
,
gradientLegend()
,
legend_margin()
,
marginDensityPlot()
,
plot_error()
,
plot_image()
,
plotsurface()
,
sortBoxplot()
### EXAMPLE 1 ################################ # setup 4 panels: par(mfrow=c(2,2)) #------------------ # PLOT 1: two points #------------------ plot(0.5, 0.5, main='1', pch=21, lwd=3, col='red', bg='white', cex=1.2) points(.5, .375, pch=22, lwd=3, col='blue', cex=1.2) # Draw an error between the two points: drawDevArrows(start=c(.5,.5), end=c(.5,.375), units='coords', arrows='start', length=.1, lty=1) # ... which is the same as using arrows: arrows(x0=.5, x1=.5, y0=.5, y1=.375, code=1, length=.1, lty=1) # ... but these arrows can also be clipped to the device # instead of the plot region (see leftbottom corner): drawDevArrows(start=c(.5,.5), end=c(.5,.375), units='dev', arrows='start', length=.1, lty=1) # The function getArrowPos converts coordinates to device coordinates: x1 <- getArrowPos(x=0.5, y=0.5, units='coords') x2 <- getArrowPos(x=0.5, y=0.375, units='coords') drawDevArrows(x1, x2, col='purple', arrows='start', length=.1, lty=2, lwd=2) # Setup 4 arrows with the same starting points, # but defined differently: a1 <- getArrowPos(x=0.5, y=0.375, units='coords') a2 <- getArrowPos(x=0.5, y=0.21, units='prop') a3 <- getArrowPos(x=0.55, y=0.36, units='prop', dev='fig') a4 <- getArrowPos(x=0.5*0.55, y=.5*0.36+.5, units='prop', dev='dev') # Setup 3 arrows with the same x and y values, # which define different starting points in practice: b1 <- getArrowPos(x=.5, y=.5, units='prop', dev='plot') b2 <- getArrowPos(x=.5, y=.5, units='prop', dev='fig') b3 <- getArrowPos(x=.5, y=.5, units='prop', dev='dev') #------------------ # PLOT 2: different coordinates #------------------ plot(c(-2.33, 20), c(.3, .8), type='n', main='2') points(15,.8, pch=21, lwd=3, col='red', bg='white', cex=1.2) # define end point for b: b <- getArrowPos(x=15, y=.8) # Draw arrow b1: drawDevArrows(start=b1, end=b, arrows='start', length=.1, lty=1) #------------------ # PLOT 3: upside down axis #------------------ emptyPlot(c(25, 1050), c(15,-15), eegAxis=TRUE, h0=0) # plot line: x <- 0:1000 y <- 10*cos(x/100) lines(x, y, col=4) # draw point points on gthe line: x <- c(200,400,600,800) y <- 10*cos(x/100) points(x,y, pch=18) # To avoid calling the function drawDevArrows 4 times, we rewrite # the x- and y-positions of the 4 coordinates a1, a2, a3, a4 in one list: a.start <- list(x=c(a1$x, a2$x, a3$x, a4$x), y=c(a1$y, a2$y, a3$y, a4$y)) # Define end points on the line: a.end <- getArrowPos(x=x, y=y) drawDevArrows(start=a.start, end=a.end, arrows='none', lty=3) # Note that these four coordinates are actually referring # to the same starting point! # So instead we could have written: drawDevArrows(start=a1, end=a.end, arrows='none', col=alpha('red'), lwd=2) #------------------ # PLOT 4: wrapping up #------------------ # Arrows could be constructed when the plot is not yet called, # as they are clipped to the device: drawDevArrows(start=c(0,7), end=c(7,0), col='gray', lwd=4, lty=3, arrows='none') # Add the plot: plot(1,1, bg='green') # Finish b2 and b3: same x and y, but different coordinates drawDevArrows(start=b2, end=b, arrows='start', length=.1, lty=2) drawDevArrows(start=b3, end=b, arrows='start', length=.1, lty=3) ### EXAMPLE 2 ################################ # setup 4 plots: par(mfrow=c(2,2)) n <- 50 #------------------ # PLOT 1: empty #------------------ emptyPlot(c(25, 1050), c(15,-15), axes=FALSE) lines(0:1000, 10*cos(0:1000/200), col=4) x <- seq(0,1000, length=n) y <- 10*cos(x/200) a <- getArrowPos(x=x, y=y) #------------------ # PLOT 2 #------------------ emptyPlot(c(25, 1050), c(15,-15), axes=FALSE) lines(0:1000, 10*sin(0:1000/200), col=1) x <- seq(0,1000, length=n) y <- 10*sin(x/200) b <- getArrowPos(x=x, y=y) #------------------ # PLOT 3 #------------------ emptyPlot(c(25, 1050), c(15,-15), axes=FALSE) lines(0:1000, 10*cos(0:1000/200), col=4) x <- seq(0,1000, length=n) y <- 10*cos(x/200) c <- getArrowPos(x=rev(x), y=rev(y)) #------------------ # PLOT 4 #------------------ emptyPlot(c(25, 1050), c(15,-15), axes=FALSE) lines(0:1000, 10*sin(0:1000/200), col=1) x <- seq(0,1000, length=n) y <- 10*sin(x/200) d1 <- getArrowPos(x=rev(x), y=rev(y)) d2 <- getArrowPos(x=x, y=y) #------------------ # DRAW ARROWS #------------------ drawDevArrows(start=a, end=b, arrows='none', col='gray') drawDevArrows(start=c, end=d1, arrows='none', col='gray') drawDevArrows(start=a, end=c, arrows='none', col=alphaPalette(c('green', 'blue'), f.seq=c(0,1), n=n)) drawDevArrows(start=b, end=d2, arrows='none', col=alphaPalette('pink', f.seq=c(1,.1), n=n))
### EXAMPLE 1 ################################ # setup 4 panels: par(mfrow=c(2,2)) #------------------ # PLOT 1: two points #------------------ plot(0.5, 0.5, main='1', pch=21, lwd=3, col='red', bg='white', cex=1.2) points(.5, .375, pch=22, lwd=3, col='blue', cex=1.2) # Draw an error between the two points: drawDevArrows(start=c(.5,.5), end=c(.5,.375), units='coords', arrows='start', length=.1, lty=1) # ... which is the same as using arrows: arrows(x0=.5, x1=.5, y0=.5, y1=.375, code=1, length=.1, lty=1) # ... but these arrows can also be clipped to the device # instead of the plot region (see leftbottom corner): drawDevArrows(start=c(.5,.5), end=c(.5,.375), units='dev', arrows='start', length=.1, lty=1) # The function getArrowPos converts coordinates to device coordinates: x1 <- getArrowPos(x=0.5, y=0.5, units='coords') x2 <- getArrowPos(x=0.5, y=0.375, units='coords') drawDevArrows(x1, x2, col='purple', arrows='start', length=.1, lty=2, lwd=2) # Setup 4 arrows with the same starting points, # but defined differently: a1 <- getArrowPos(x=0.5, y=0.375, units='coords') a2 <- getArrowPos(x=0.5, y=0.21, units='prop') a3 <- getArrowPos(x=0.55, y=0.36, units='prop', dev='fig') a4 <- getArrowPos(x=0.5*0.55, y=.5*0.36+.5, units='prop', dev='dev') # Setup 3 arrows with the same x and y values, # which define different starting points in practice: b1 <- getArrowPos(x=.5, y=.5, units='prop', dev='plot') b2 <- getArrowPos(x=.5, y=.5, units='prop', dev='fig') b3 <- getArrowPos(x=.5, y=.5, units='prop', dev='dev') #------------------ # PLOT 2: different coordinates #------------------ plot(c(-2.33, 20), c(.3, .8), type='n', main='2') points(15,.8, pch=21, lwd=3, col='red', bg='white', cex=1.2) # define end point for b: b <- getArrowPos(x=15, y=.8) # Draw arrow b1: drawDevArrows(start=b1, end=b, arrows='start', length=.1, lty=1) #------------------ # PLOT 3: upside down axis #------------------ emptyPlot(c(25, 1050), c(15,-15), eegAxis=TRUE, h0=0) # plot line: x <- 0:1000 y <- 10*cos(x/100) lines(x, y, col=4) # draw point points on gthe line: x <- c(200,400,600,800) y <- 10*cos(x/100) points(x,y, pch=18) # To avoid calling the function drawDevArrows 4 times, we rewrite # the x- and y-positions of the 4 coordinates a1, a2, a3, a4 in one list: a.start <- list(x=c(a1$x, a2$x, a3$x, a4$x), y=c(a1$y, a2$y, a3$y, a4$y)) # Define end points on the line: a.end <- getArrowPos(x=x, y=y) drawDevArrows(start=a.start, end=a.end, arrows='none', lty=3) # Note that these four coordinates are actually referring # to the same starting point! # So instead we could have written: drawDevArrows(start=a1, end=a.end, arrows='none', col=alpha('red'), lwd=2) #------------------ # PLOT 4: wrapping up #------------------ # Arrows could be constructed when the plot is not yet called, # as they are clipped to the device: drawDevArrows(start=c(0,7), end=c(7,0), col='gray', lwd=4, lty=3, arrows='none') # Add the plot: plot(1,1, bg='green') # Finish b2 and b3: same x and y, but different coordinates drawDevArrows(start=b2, end=b, arrows='start', length=.1, lty=2) drawDevArrows(start=b3, end=b, arrows='start', length=.1, lty=3) ### EXAMPLE 2 ################################ # setup 4 plots: par(mfrow=c(2,2)) n <- 50 #------------------ # PLOT 1: empty #------------------ emptyPlot(c(25, 1050), c(15,-15), axes=FALSE) lines(0:1000, 10*cos(0:1000/200), col=4) x <- seq(0,1000, length=n) y <- 10*cos(x/200) a <- getArrowPos(x=x, y=y) #------------------ # PLOT 2 #------------------ emptyPlot(c(25, 1050), c(15,-15), axes=FALSE) lines(0:1000, 10*sin(0:1000/200), col=1) x <- seq(0,1000, length=n) y <- 10*sin(x/200) b <- getArrowPos(x=x, y=y) #------------------ # PLOT 3 #------------------ emptyPlot(c(25, 1050), c(15,-15), axes=FALSE) lines(0:1000, 10*cos(0:1000/200), col=4) x <- seq(0,1000, length=n) y <- 10*cos(x/200) c <- getArrowPos(x=rev(x), y=rev(y)) #------------------ # PLOT 4 #------------------ emptyPlot(c(25, 1050), c(15,-15), axes=FALSE) lines(0:1000, 10*sin(0:1000/200), col=1) x <- seq(0,1000, length=n) y <- 10*sin(x/200) d1 <- getArrowPos(x=rev(x), y=rev(y)) d2 <- getArrowPos(x=x, y=y) #------------------ # DRAW ARROWS #------------------ drawDevArrows(start=a, end=b, arrows='none', col='gray') drawDevArrows(start=c, end=d1, arrows='none', col='gray') drawDevArrows(start=a, end=c, arrows='none', col=alphaPalette(c('green', 'blue'), f.seq=c(0,1), n=n)) drawDevArrows(start=b, end=d2, arrows='none', col=alphaPalette('pink', f.seq=c(1,.1), n=n))
Generate an empty plot window.
emptyPlot( xlim, ylim, main = NULL, xlab = NULL, ylab = NULL, h0 = NULL, v0 = NULL, bty = "n", eegAxis = FALSE, xmark = NULL, ymark = NULL, ... )
emptyPlot( xlim, ylim, main = NULL, xlab = NULL, ylab = NULL, h0 = NULL, v0 = NULL, bty = "n", eegAxis = FALSE, xmark = NULL, ymark = NULL, ... )
xlim |
A one- or two-value vector indicating the range of the x-axis.
If |
ylim |
A one- or two-value vector indicating the range of the y-axis.
(See |
main |
Title for the plot. Empty by default.
Note: the title can be added later using |
xlab |
Label for x-axis. Empty by default. If no label is provided,
use |
ylab |
Label for y-axis. Empty by default. (See |
h0 |
A vector indicating where to add solid horizontal lines for reference. By default no values provided. |
v0 |
A vector indicating where to add dotted vertical lines for reference. By default no values provided. |
bty |
A character string which determined the type of box which is drawn about plots. If bty is one of 'o', 'l', '7', 'c', 'u', or ']' the resulting box resembles the corresponding upper case letter. A value of 'n' (the default) suppresses the box. |
eegAxis |
Logical: whether or not to reverse the y-axis, plotting the negative amplitudes upwards as traditionally is done in EEG research. If eeg.axes is TRUE, labels for x- and y-axis are provided, when not provided by the user. Default value is FALSE. |
xmark |
Numeric factor with x-axis tick marks and limits.
If NULL (default) R's default system is used. If TRUE, only the |
ymark |
Numeric factor with y-axis tick marks and limits.
If NULL (default) R's default system is used. If TRUE, only the |
... |
Other arguments for plotting, see |
An empty plot window.
Jacolien van Rij
Use title
and
mtext
for drawing labels and titles;
use lines
and points
for plotting the data;
use legend
or
legend_margin
for adding a legend.
Other Functions for plotting:
addInterval()
,
add_bars()
,
add_n_points()
,
alphaPalette()
,
alpha()
,
check_normaldist()
,
color_contour()
,
dotplot_error()
,
drawDevArrows()
,
errorBars()
,
fill_area()
,
getCoords()
,
getFigCoords()
,
getProps()
,
gradientLegend()
,
legend_margin()
,
marginDensityPlot()
,
plot_error()
,
plot_image()
,
plotsurface()
,
sortBoxplot()
# generate some measurements: x <- runif(100,0,100) y <- rpois(100,lambda=3) # Setup empty plot window fitting for data: emptyPlot(range(x), range(y)) # To add data, use lines() and points() points(x,y, pch=16, col=alpha('steelblue')) # Category labels: emptyPlot(toupper(letters[1:5]), 1) # order matters: emptyPlot(sample(toupper(letters[1:5])), 1) # actually, they are plotted on x-positions 1:5 points(1:5, rnorm(5, mean=.5, sd=.1)) # also possible for y-axis or both: emptyPlot(c(200,700), toupper(letters[1:5])) emptyPlot(as.character(8:3), toupper(letters[1:5])) # change orientation of labels: par(las=1) emptyPlot(c(200,700), toupper(letters[1:5])) par(las=0) # set back to default # More options: emptyPlot(range(x), range(y), main='Data', ylab='Y', xlab='Time') # add averages: m <- tapply(y, list(round(x/10)*10), mean) lines(as.numeric(names(m)), m, type='o', pch=4) # with vertical and horizontal lines: emptyPlot(1, 1, h0=.5, v0=.75) # eeg axis (note the axes labels): emptyPlot(c(-200,1000), c(-5,5), main='EEG', v0=0, h0=0, eegAxis=TRUE) # simplify axes: emptyPlot(c(-3.2,1.1), c(53,58), xmark=TRUE, ymark=TRUE, las=1) # compare with R default: emptyPlot(c(-3.2,1.1), c(53,58), las=1) # also possible to specify values manually: emptyPlot(c(-3.2,1.1), c(53,58), xmark=c(-3.2,0, 1.1), ymark=c(55,57), las=1) # empty window: emptyPlot(1,1,axes=FALSE) # add box: emptyPlot(1,1, bty='o')
# generate some measurements: x <- runif(100,0,100) y <- rpois(100,lambda=3) # Setup empty plot window fitting for data: emptyPlot(range(x), range(y)) # To add data, use lines() and points() points(x,y, pch=16, col=alpha('steelblue')) # Category labels: emptyPlot(toupper(letters[1:5]), 1) # order matters: emptyPlot(sample(toupper(letters[1:5])), 1) # actually, they are plotted on x-positions 1:5 points(1:5, rnorm(5, mean=.5, sd=.1)) # also possible for y-axis or both: emptyPlot(c(200,700), toupper(letters[1:5])) emptyPlot(as.character(8:3), toupper(letters[1:5])) # change orientation of labels: par(las=1) emptyPlot(c(200,700), toupper(letters[1:5])) par(las=0) # set back to default # More options: emptyPlot(range(x), range(y), main='Data', ylab='Y', xlab='Time') # add averages: m <- tapply(y, list(round(x/10)*10), mean) lines(as.numeric(names(m)), m, type='o', pch=4) # with vertical and horizontal lines: emptyPlot(1, 1, h0=.5, v0=.75) # eeg axis (note the axes labels): emptyPlot(c(-200,1000), c(-5,5), main='EEG', v0=0, h0=0, eegAxis=TRUE) # simplify axes: emptyPlot(c(-3.2,1.1), c(53,58), xmark=TRUE, ymark=TRUE, las=1) # compare with R default: emptyPlot(c(-3.2,1.1), c(53,58), las=1) # also possible to specify values manually: emptyPlot(c(-3.2,1.1), c(53,58), xmark=c(-3.2,0, 1.1), ymark=c(55,57), las=1) # empty window: emptyPlot(1,1,axes=FALSE) # add box: emptyPlot(1,1, bty='o')
Add vertical error bars.
errorBars( x, mean, ci, ci.l = NULL, minmax = NULL, horiz = FALSE, border = FALSE, ... )
errorBars( x, mean, ci, ci.l = NULL, minmax = NULL, horiz = FALSE, border = FALSE, ... )
x |
Vector with x-values (or y-values in case |
mean |
Vector with means. |
ci |
Vector with errors or confidence bands, e.g. SE values. If
|
ci.l |
Optional: vector with error to calculate lower confidence band. |
minmax |
Optional argument, vector with two values indicating the minimum and maximum value for the error bars. If NULL (default) the error bars are not corrected. |
horiz |
Logical: whether or not to plot horizontal error bars. Defaults to FALSE (plotting vertical error bars). |
border |
Logical: whether or not to add a border around the error
bars. Defaults to FALSE (no border added).
Color and width of the borders can be adjusted using |
... |
Optional graphical parameters (see |
Jacolien van Rij
Other Functions for plotting:
addInterval()
,
add_bars()
,
add_n_points()
,
alphaPalette()
,
alpha()
,
check_normaldist()
,
color_contour()
,
dotplot_error()
,
drawDevArrows()
,
emptyPlot()
,
fill_area()
,
getCoords()
,
getFigCoords()
,
getProps()
,
gradientLegend()
,
legend_margin()
,
marginDensityPlot()
,
plot_error()
,
plot_image()
,
plotsurface()
,
sortBoxplot()
# example InsectSprays from R datasets InsectSprays$type <- ifelse( InsectSprays$spray %in% c('A', 'B', 'F'), 1,2) avg <- with(InsectSprays, tapply(count, list(spray), mean)) sds <- with(InsectSprays, tapply(count, list(spray), sd)) # barplot: b <- barplot(avg, beside=TRUE, main='Insect Sprays', ylim=c(0,20)) errorBars(b, avg, sds, xpd=TRUE, length=.05) # constrain error bars to max and min of plot: b <- barplot(avg, beside=TRUE, main='Insect Sprays', ylim=c(0,20)) errorBars(b, avg, sds, minmax=c(0,20), xpd=TRUE, length=.05) # add borders: b <- barplot(avg, beside=TRUE, main='Insect Sprays', ylim=c(0,20), col=1, border=NA) errorBars(b, avg, sds, minmax=c(0,20), xpd=TRUE, length=.05, border=TRUE) # change layout: b <- barplot(avg, beside=TRUE, main='Insect Sprays', ylim=c(0,20), col=1, border=NA) errorBars(b, avg, sds, minmax=c(0,20), xpd=TRUE, border=TRUE, length=.05, col='blue', # settings for error bars border.length=.1, border.col='yellow', border.lwd=5) # settings border # line plot with asymmetric fake errors: emptyPlot(toupper(letters[1:6]), 20, main='Averages', xlab='Spray') ci.low <- abs(rnorm(6, mean=2)) ci.high <- abs(rnorm(6, mean=4)) errorBars(1:6, avg, ci.high, ci.l= ci.low, length=.05, lwd=2) points(1:6, avg, pch=21, type='o', lty=3, lwd=2, bg='white', xpd=TRUE) # also horizontal bars possible: errorBars(10, 1, 1.2, horiz=TRUE, col='red')
# example InsectSprays from R datasets InsectSprays$type <- ifelse( InsectSprays$spray %in% c('A', 'B', 'F'), 1,2) avg <- with(InsectSprays, tapply(count, list(spray), mean)) sds <- with(InsectSprays, tapply(count, list(spray), sd)) # barplot: b <- barplot(avg, beside=TRUE, main='Insect Sprays', ylim=c(0,20)) errorBars(b, avg, sds, xpd=TRUE, length=.05) # constrain error bars to max and min of plot: b <- barplot(avg, beside=TRUE, main='Insect Sprays', ylim=c(0,20)) errorBars(b, avg, sds, minmax=c(0,20), xpd=TRUE, length=.05) # add borders: b <- barplot(avg, beside=TRUE, main='Insect Sprays', ylim=c(0,20), col=1, border=NA) errorBars(b, avg, sds, minmax=c(0,20), xpd=TRUE, length=.05, border=TRUE) # change layout: b <- barplot(avg, beside=TRUE, main='Insect Sprays', ylim=c(0,20), col=1, border=NA) errorBars(b, avg, sds, minmax=c(0,20), xpd=TRUE, border=TRUE, length=.05, col='blue', # settings for error bars border.length=.1, border.col='yellow', border.lwd=5) # settings border # line plot with asymmetric fake errors: emptyPlot(toupper(letters[1:6]), 20, main='Averages', xlab='Spray') ci.low <- abs(rnorm(6, mean=2)) ci.high <- abs(rnorm(6, mean=4)) errorBars(1:6, avg, ci.high, ci.l= ci.low, length=.05, lwd=2) points(1:6, avg, pch=21, type='o', lty=3, lwd=2, bg='white', xpd=TRUE) # also horizontal bars possible: errorBars(10, 1, 1.2, horiz=TRUE, col='red')
Fill area under line or plot.
fill_area( x, y, from = 0, col = "black", alpha = 0.25, border = NA, na.rm = TRUE, horiz = TRUE, outline = FALSE, ... )
fill_area( x, y, from = 0, col = "black", alpha = 0.25, border = NA, na.rm = TRUE, horiz = TRUE, outline = FALSE, ... )
x |
Vector with values on x-axis. |
y |
Vector with values on y-axis. |
from |
A number indicating until which value on the y-axis the graph is colored. Defaults to 0. |
col |
Color for filling the area. Default is black. |
alpha |
Transparency of shaded area. Number between 0 (completely transparent) and 1 (not transparent). Default is .25. |
border |
A color, indicating the color of the border around shaded area. No border with value NA (default). |
na.rm |
Logical: whether or not to remove the missing values in
|
horiz |
Logical: whether or not to plot with respect to the x-axis (TRUE) or y-xis (FALSE). Defaults to TRUE. |
outline |
Logical: whether or not to draw the outline instead of only the upper border of the shape. Default is FALSE (no complete outline). |
... |
Optional arguments for the lines. See |
Jacolien van Rij
Other Functions for plotting:
addInterval()
,
add_bars()
,
add_n_points()
,
alphaPalette()
,
alpha()
,
check_normaldist()
,
color_contour()
,
dotplot_error()
,
drawDevArrows()
,
emptyPlot()
,
errorBars()
,
getCoords()
,
getFigCoords()
,
getProps()
,
gradientLegend()
,
legend_margin()
,
marginDensityPlot()
,
plot_error()
,
plot_image()
,
plotsurface()
,
sortBoxplot()
# density of a random sample from normal distribution: test <- density(rnorm(1000)) emptyPlot(range(test$x), range(test$y)) fill_area(test$x, test$y) fill_area(test$x, test$y, from=.1, col='red') fill_area(test$x, test$y, from=.2, col='blue', density=10, lwd=3) lines(test$x, test$y, lwd=2)
# density of a random sample from normal distribution: test <- density(rnorm(1000)) emptyPlot(range(test$x), range(test$y)) fill_area(test$x, test$y) fill_area(test$x, test$y, from=.1, col='red') fill_area(test$x, test$y, from=.2, col='blue', density=10, lwd=3) lines(test$x, test$y, lwd=2)
Return n neighbors around given indices.
find_n_neighbors(el, n, max)
find_n_neighbors(el, n, max)
el |
A numeric vector. |
n |
Number indicating how many points around the elements of |
max |
The maximum value of the returned elements. |
A vector with the elements of x surrounded by n points.
Jacolien van Rij
Other Utility functions:
findAbsMin()
,
firstLetterCap()
,
getArrowPos()
,
getDec()
,
getRange()
,
getRatioCoords()
,
get_palette()
,
group_sort()
,
inch2coords()
,
isColor()
,
list2str()
,
move_n_point()
,
orderBoxplot()
,
se()
,
sortGroups()
vectorIndices <- 1:1000 indOutliers <- c(2,10, 473, 359, 717, 519) fn3 <- find_n_neighbors(indOutliers, n=3, max=max(vectorIndices)) fn20 <- find_n_neighbors(indOutliers, n=20, max=max(vectorIndices)) # check fn3: print(fn3) # Plot: emptyPlot(c(-10,1000), c(-1,1), h0=0, v0=indOutliers) points(fn3, rep(.5, length(fn3)), pch='*') points(fn20, rep(-.5, length(fn20)), pch='*')
vectorIndices <- 1:1000 indOutliers <- c(2,10, 473, 359, 717, 519) fn3 <- find_n_neighbors(indOutliers, n=3, max=max(vectorIndices)) fn20 <- find_n_neighbors(indOutliers, n=20, max=max(vectorIndices)) # check fn3: print(fn3) # Plot: emptyPlot(c(-10,1000), c(-1,1), h0=0, v0=indOutliers) points(fn3, rep(.5, length(fn3)), pch='*') points(fn20, rep(-.5, length(fn20)), pch='*')
Return the value (or the element with the value) closest to zero.
findAbsMin(x, element = FALSE)
findAbsMin(x, element = FALSE)
x |
A numeric vector. |
element |
Logical: whether or not to return the value (FALSE, default) or the index (TRUE). |
The value or index of the element closest to zero (absolute minimum).
Jacolien van Rij
Other Utility functions:
find_n_neighbors()
,
firstLetterCap()
,
getArrowPos()
,
getDec()
,
getRange()
,
getRatioCoords()
,
get_palette()
,
group_sort()
,
inch2coords()
,
isColor()
,
list2str()
,
move_n_point()
,
orderBoxplot()
,
se()
,
sortGroups()
(test <- seq(-25,25, by=3)) min(test[test>0]) max(test[test<0]) min(abs(test)) findAbsMin(test)
(test <- seq(-25,25, by=3)) min(test[test>0]) max(test[test<0]) min(abs(test)) findAbsMin(test)
Capitalize first letter of a string.
firstLetterCap(x)
firstLetterCap(x)
x |
Text string |
Text string
Other Utility functions:
findAbsMin()
,
find_n_neighbors()
,
getArrowPos()
,
getDec()
,
getRange()
,
getRatioCoords()
,
get_palette()
,
group_sort()
,
inch2coords()
,
isColor()
,
list2str()
,
move_n_point()
,
orderBoxplot()
,
se()
,
sortGroups()
Retrieve the color scheme for contour plots.
get_palette(color, nCol = 50, col = NULL)
get_palette(color, nCol = 50, col = NULL)
color |
A string, or vector of strings, indicating a color palette. Includes: 'topo', 'heat', 'bwr', 'cm', 'terrain', 'bpy', 'gray', 'bw', or user defined colors. |
nCol |
The number of colors to use in color schemes. |
col |
Color of contour lines for the contour plots. If NULL (default), a color is determined, depending on the color palette. |
Color palette.
Other Utility functions:
findAbsMin()
,
find_n_neighbors()
,
firstLetterCap()
,
getArrowPos()
,
getDec()
,
getRange()
,
getRatioCoords()
,
group_sort()
,
inch2coords()
,
isColor()
,
list2str()
,
move_n_point()
,
orderBoxplot()
,
se()
,
sortGroups()
pal <- get_palette('terrain', nCol=10) names(pal) image(matrix(1:10, ncol=10), col=pal$color, axes=FALSE) # user defined color palette: pal <- get_palette(c('green', 'orange', 'red')) image(matrix(1:10, ncol=10), col=pal$color, axes=FALSE)
pal <- get_palette('terrain', nCol=10) names(pal) image(matrix(1:10, ncol=10), col=pal$color, axes=FALSE) # user defined color palette: pal <- get_palette(c('green', 'orange', 'red')) image(matrix(1:10, ncol=10), col=pal$color, axes=FALSE)
Converts coordinates in current plot region to device positions (in inch).
getArrowPos( x, y, units = c("coords", "prop"), dev = c("plot", "figure", "panel") )
getArrowPos( x, y, units = c("coords", "prop"), dev = c("plot", "figure", "panel") )
x |
Numeric: x coordinate(s) |
y |
Numeric: y coordinate(s) |
units |
Coordinates (default) or proportions with respect to plot region. |
dev |
x and y position are measured with respect to the plot region (default), figure panel, or device. |
list
Other Utility functions:
findAbsMin()
,
find_n_neighbors()
,
firstLetterCap()
,
getDec()
,
getRange()
,
getRatioCoords()
,
get_palette()
,
group_sort()
,
inch2coords()
,
isColor()
,
list2str()
,
move_n_point()
,
orderBoxplot()
,
se()
,
sortGroups()
Function for positioning a legend or label in or outside the plot region based on proportion of the plot region rather than Cartesian coordinates.
getCoords(pos = 1.1, side = 1, input = "p")
getCoords(pos = 1.1, side = 1, input = "p")
pos |
A number indicating the proportion on the x-axis. Default is 1.1. |
side |
Which axis to choose: 1=bottom, 2=left, 3=top, 4=right. Default is 1. |
input |
Which proportion to take: with respect to the plot region (input 'p', default), or with respect to figure region (input 'f'). |
Jacolien van Rij
Other Functions for plotting:
addInterval()
,
add_bars()
,
add_n_points()
,
alphaPalette()
,
alpha()
,
check_normaldist()
,
color_contour()
,
dotplot_error()
,
drawDevArrows()
,
emptyPlot()
,
errorBars()
,
fill_area()
,
getFigCoords()
,
getProps()
,
gradientLegend()
,
legend_margin()
,
marginDensityPlot()
,
plot_error()
,
plot_image()
,
plotsurface()
,
sortBoxplot()
# set larger plot window, depending on your system: # dev.new(,with=8, height=4) # windows, mac # quartz(,8,4) # Mac # x11(width=8, height=4) # linux par(mfrow=c(1,2)) # PLOT 1: y-range is -1 to 1 emptyPlot(c(0,1),c(-1,1), h0=0, v0=0.5) # calculate the x-coordinates for points at proportion # -0.2, 0, .25, .5, 1.0, and 1.1 of the plot window: p1 <- getCoords(pos=c(-0.2,0,.25,.5,1,1.1), side=2) # use xpd=TRUE to plot outside plot region: points(rep(0.5,length(p1)), p1, pch=16, xpd=TRUE) # add legend outside plot region, in upper-right corner of figure: legend(x=getCoords(1,side=1, input='f'), y=getCoords(1, side=2, input='f'), xjust=1, yjust=1, legend=c('points'), pch=16, xpd=TRUE) # Note: this can easier be achieved with function getFigCoords # PLOT 2: y-range is 25 to 37 # we would like to plot the points and legend at same positions emptyPlot(c(0,1),c(25,37), h0=0, v0=0.5) p1 <- getCoords(pos=c(-0.2,0,.25,.5,1,1.1), side=2) points(rep(0.5,length(p1)), p1, pch=16, xpd=TRUE) # add legend outside plot region, in upper-left corner of figure: legend(x=getCoords(0,side=1, input='f'), y=getCoords(1, side=2, input='f'), xjust=0, yjust=1, legend=c('points'), pch=16, xpd=TRUE)
# set larger plot window, depending on your system: # dev.new(,with=8, height=4) # windows, mac # quartz(,8,4) # Mac # x11(width=8, height=4) # linux par(mfrow=c(1,2)) # PLOT 1: y-range is -1 to 1 emptyPlot(c(0,1),c(-1,1), h0=0, v0=0.5) # calculate the x-coordinates for points at proportion # -0.2, 0, .25, .5, 1.0, and 1.1 of the plot window: p1 <- getCoords(pos=c(-0.2,0,.25,.5,1,1.1), side=2) # use xpd=TRUE to plot outside plot region: points(rep(0.5,length(p1)), p1, pch=16, xpd=TRUE) # add legend outside plot region, in upper-right corner of figure: legend(x=getCoords(1,side=1, input='f'), y=getCoords(1, side=2, input='f'), xjust=1, yjust=1, legend=c('points'), pch=16, xpd=TRUE) # Note: this can easier be achieved with function getFigCoords # PLOT 2: y-range is 25 to 37 # we would like to plot the points and legend at same positions emptyPlot(c(0,1),c(25,37), h0=0, v0=0.5) p1 <- getCoords(pos=c(-0.2,0,.25,.5,1,1.1), side=2) points(rep(0.5,length(p1)), p1, pch=16, xpd=TRUE) # add legend outside plot region, in upper-left corner of figure: legend(x=getCoords(0,side=1, input='f'), y=getCoords(1, side=2, input='f'), xjust=0, yjust=1, legend=c('points'), pch=16, xpd=TRUE)
Return the number of decimal places.
getDec(x)
getDec(x)
x |
A numeric vector. |
Number of decimals
Based on http://stackoverflow.com/questions/5173692/how-to-return-number-of-decimal-places-in-r, but improved
Other Utility functions:
findAbsMin()
,
find_n_neighbors()
,
firstLetterCap()
,
getArrowPos()
,
getRange()
,
getRatioCoords()
,
get_palette()
,
group_sort()
,
inch2coords()
,
isColor()
,
list2str()
,
move_n_point()
,
orderBoxplot()
,
se()
,
sortGroups()
getDec(c(10,10.432, 11.01, .000001))
getDec(c(10,10.432, 11.01, .000001))
Get the figure region as coordinates of the current plot region, or as corrdinates of the figure region.
getFigCoords(input = "f")
getFigCoords(input = "f")
input |
Text string: 'f' (figure, default), 'p' (plot region), 'hf' (half way figure region), or 'hp' (half way plot region) |
A vector of the form c(x1, x2, y1, y2) giving the boundaries of the figure region as coordinates of the current plot region.
Jacolien van Rij
Other Functions for plotting:
addInterval()
,
add_bars()
,
add_n_points()
,
alphaPalette()
,
alpha()
,
check_normaldist()
,
color_contour()
,
dotplot_error()
,
drawDevArrows()
,
emptyPlot()
,
errorBars()
,
fill_area()
,
getCoords()
,
getProps()
,
gradientLegend()
,
legend_margin()
,
marginDensityPlot()
,
plot_error()
,
plot_image()
,
plotsurface()
,
sortBoxplot()
# setup plot region: emptyPlot(1,1, bty='o') fc <- getFigCoords() pc <- getFigCoords('p') arrows(x0=pc[c(1,2,1,2)], x1=fc[c(1,2,1,2)], y0=pc[c(3,3,4,4)], y1=fc[c(3,3,4,4)], xpd=TRUE) # Same plot with different axis: emptyPlot(c(250,500),c(331, 336), bty='o') fc <- getFigCoords() pc <- getFigCoords('p') arrows(x0=pc[c(1,2,1,2)], x1=fc[c(1,2,1,2)], y0=pc[c(3,3,4,4)], y1=fc[c(3,3,4,4)], xpd=TRUE) hc <- getFigCoords('h') # other options: # 1. center of figure region: abline(v=getFigCoords('hf')[1], col='blue', xpd=TRUE) abline(h=getFigCoords('hf')[2], col='blue', xpd=TRUE) # 2. center of plot region: abline(v=getFigCoords('hp')[1], col='red', lty=3) abline(h=getFigCoords('hp')[2], col='red', lty=3)
# setup plot region: emptyPlot(1,1, bty='o') fc <- getFigCoords() pc <- getFigCoords('p') arrows(x0=pc[c(1,2,1,2)], x1=fc[c(1,2,1,2)], y0=pc[c(3,3,4,4)], y1=fc[c(3,3,4,4)], xpd=TRUE) # Same plot with different axis: emptyPlot(c(250,500),c(331, 336), bty='o') fc <- getFigCoords() pc <- getFigCoords('p') arrows(x0=pc[c(1,2,1,2)], x1=fc[c(1,2,1,2)], y0=pc[c(3,3,4,4)], y1=fc[c(3,3,4,4)], xpd=TRUE) hc <- getFigCoords('h') # other options: # 1. center of figure region: abline(v=getFigCoords('hf')[1], col='blue', xpd=TRUE) abline(h=getFigCoords('hf')[2], col='blue', xpd=TRUE) # 2. center of plot region: abline(v=getFigCoords('hp')[1], col='red', lty=3) abline(h=getFigCoords('hp')[2], col='red', lty=3)
Function for positioning a legend or label in or outside the plot region based on proportion of the plot region rather than Cartesian coordinates.
getProps(pos, side = 1, output = "p")
getProps(pos, side = 1, output = "p")
pos |
A number indicating the coordinates on the x- or y-axis. |
side |
Which axis to choose: 1=bottom, 2=left, 3=top, 4=right. Default is 1. |
output |
Which proportion to take: with respect to the plot region (input 'p', default), or with respect to figure region (output 'f'). |
Jacolien van Rij
Other Functions for plotting:
addInterval()
,
add_bars()
,
add_n_points()
,
alphaPalette()
,
alpha()
,
check_normaldist()
,
color_contour()
,
dotplot_error()
,
drawDevArrows()
,
emptyPlot()
,
errorBars()
,
fill_area()
,
getCoords()
,
getFigCoords()
,
gradientLegend()
,
legend_margin()
,
marginDensityPlot()
,
plot_error()
,
plot_image()
,
plotsurface()
,
sortBoxplot()
# not very easy-to-calculate-with x- and y-axis values emptyPlot(c(-2.35, 37.4), c(9,11), v0=0) # draw a mirror symmetric image of boxes: p1 <- c(9.5, 9.5) p2 <- c(4,9.7) p3 <- c(20,9) p1m <- getCoords(1-getProps(p1, side=c(1,2)), side=c(1,2)) p2m <- getCoords(1-getProps(p2, side=c(1,2)), side=c(1,2)) p3m <- getCoords(1-getProps(p3, side=c(1,2)), side=c(1,2)) xdist <- diff(getCoords(c(0,.1), side=1)) ydist <- diff(getCoords(c(0,.1), side=2)) rect(xleft=c(p1[1],p2[1], p3[1], p1m[1], p2m[1], p3m[1])-xdist, xright=c(p1[1],p2[1], p3[1], p1m[1], p2m[1], p3m[1])+xdist, ybottom=c(p1[2],p2[2], p3[2], p1m[2], p2m[2], p3m[2])-ydist, ytop=c(p1[2],p2[2], p3[2], p1m[2], p2m[2], p3m[2])+ydist, col=rep(c('red', NA, 'lightblue'),2), xpd=TRUE )
# not very easy-to-calculate-with x- and y-axis values emptyPlot(c(-2.35, 37.4), c(9,11), v0=0) # draw a mirror symmetric image of boxes: p1 <- c(9.5, 9.5) p2 <- c(4,9.7) p3 <- c(20,9) p1m <- getCoords(1-getProps(p1, side=c(1,2)), side=c(1,2)) p2m <- getCoords(1-getProps(p2, side=c(1,2)), side=c(1,2)) p3m <- getCoords(1-getProps(p3, side=c(1,2)), side=c(1,2)) xdist <- diff(getCoords(c(0,.1), side=1)) ydist <- diff(getCoords(c(0,.1), side=2)) rect(xleft=c(p1[1],p2[1], p3[1], p1m[1], p2m[1], p3m[1])-xdist, xright=c(p1[1],p2[1], p3[1], p1m[1], p2m[1], p3m[1])+xdist, ybottom=c(p1[2],p2[2], p3[2], p1m[2], p2m[2], p3m[2])-ydist, ytop=c(p1[2],p2[2], p3[2], p1m[2], p2m[2], p3m[2])+ydist, col=rep(c('red', NA, 'lightblue'),2), xpd=TRUE )
Function for rounding and/or segmenting a range.
getRange(x, dec = NULL, step = NULL, n.seg = 2)
getRange(x, dec = NULL, step = NULL, n.seg = 2)
x |
A numeric vector. |
dec |
Number of decimal points for rounding using function
|
step |
Round the |
n.seg |
Numeric value, number of values in the equally spaced sequence. Default is 2 (min, max). |
vector, range of equally spaced sequence.
Jacolien van Rij
Other Utility functions:
findAbsMin()
,
find_n_neighbors()
,
firstLetterCap()
,
getArrowPos()
,
getDec()
,
getRatioCoords()
,
get_palette()
,
group_sort()
,
inch2coords()
,
isColor()
,
list2str()
,
move_n_point()
,
orderBoxplot()
,
se()
,
sortGroups()
zlim <- c(-2.5, 3.01) # does not change anything: getRange(zlim) # create a range of 5 numbers: # (basically just using seq ) getRange(zlim, n.seg=5) # rounds the numbers: getRange(zlim, dec=0) getRange(zlim, n.seg=5, dec=0) # extreme values are multiplications of 5 # that contains zlim values: getRange(zlim, step=5) getRange(zlim, step=5, n.seg=5) # similar, but not the same: getRange(zlim, n.seg=5, dec=0) getRange(zlim, n.seg=5, step=1) # combining: getRange(zlim, n.seg=5, step=1, dec=0)
zlim <- c(-2.5, 3.01) # does not change anything: getRange(zlim) # create a range of 5 numbers: # (basically just using seq ) getRange(zlim, n.seg=5) # rounds the numbers: getRange(zlim, dec=0) getRange(zlim, n.seg=5, dec=0) # extreme values are multiplications of 5 # that contains zlim values: getRange(zlim, step=5) getRange(zlim, step=5, n.seg=5) # similar, but not the same: getRange(zlim, n.seg=5, dec=0) getRange(zlim, n.seg=5, step=1) # combining: getRange(zlim, n.seg=5, step=1, dec=0)
Move a vector n elements forward or backward.
getRatioCoords( ratio, width = NULL, height = NULL, input = c("coords", "prop"), ... )
getRatioCoords( ratio, width = NULL, height = NULL, input = c("coords", "prop"), ... )
ratio |
Numeric, height : width ratio. If |
width |
The desired width in plot coordinates or proportions. If not specified (NULL), the maximal width fitting in the plot region is returned. |
height |
The desired height in plot coordinates or proportions. If not specified (NULL), the maximal height fitting in the plot region is returned. |
input |
Unit of input width and height, 'coords' (plot coordinates, default), or 'prop' (proportions of plot region). |
... |
Optional arguments: |
A list with 5 elements:
width
: width of the element in x-axis coordinates;
height
: height of the element in y-axis coordinates;
ratio
: provided ratio (for confirmation);
x
: two-number vector with x-coordinates of
left and right sides;
y
: two-number vector with y-coordinates of
bottom and top sides.
Jacolien van Rij
Other Utility functions:
findAbsMin()
,
find_n_neighbors()
,
firstLetterCap()
,
getArrowPos()
,
getDec()
,
getRange()
,
get_palette()
,
group_sort()
,
inch2coords()
,
isColor()
,
list2str()
,
move_n_point()
,
orderBoxplot()
,
se()
,
sortGroups()
data(img) emptyPlot(100, c(50, 100), h0=0, v0=0) # calculate height : width ratio of image: im.r <- dim(img$image)[1]/dim(img$image)[2] p <- getRatioCoords(ratio=im.r, width=20) # inspect p: p # No position specified, so centered: plot_image(img, type='image', add=TRUE, xrange=p$x, yrange=p$y) # ... or we could provide a position: p <- getRatioCoords(ratio=im.r, width=20, xleft=20, ybottom=60) plot_image(img, type='image', add=TRUE, xrange=p$x, yrange=p$y) # Using proportions of plot region: p <- getRatioCoords(ratio=im.r, height=.5, xleft=0, ytop=1, input='prop') plot_image(img, type='image', add=TRUE, xrange=p$x, yrange=p$y) # Changing the ratio to square: p <- getRatioCoords(ratio=1, height=.5, xright=1, ybottom=0, input='prop') plot_image(img, type='image', add=TRUE, xrange=p$x, yrange=p$y) # ... and to a long rectangle: p <- getRatioCoords(ratio=.5, height=1, xright=1, ybottom=0, input='prop') plot_image(img, type='image', add=TRUE, xrange=p$x, yrange=p$y, replace.colors=list('#B.+'='#FF000033'), border='red')
data(img) emptyPlot(100, c(50, 100), h0=0, v0=0) # calculate height : width ratio of image: im.r <- dim(img$image)[1]/dim(img$image)[2] p <- getRatioCoords(ratio=im.r, width=20) # inspect p: p # No position specified, so centered: plot_image(img, type='image', add=TRUE, xrange=p$x, yrange=p$y) # ... or we could provide a position: p <- getRatioCoords(ratio=im.r, width=20, xleft=20, ybottom=60) plot_image(img, type='image', add=TRUE, xrange=p$x, yrange=p$y) # Using proportions of plot region: p <- getRatioCoords(ratio=im.r, height=.5, xleft=0, ytop=1, input='prop') plot_image(img, type='image', add=TRUE, xrange=p$x, yrange=p$y) # Changing the ratio to square: p <- getRatioCoords(ratio=1, height=.5, xright=1, ybottom=0, input='prop') plot_image(img, type='image', add=TRUE, xrange=p$x, yrange=p$y) # ... and to a long rectangle: p <- getRatioCoords(ratio=.5, height=1, xright=1, ybottom=0, input='prop') plot_image(img, type='image', add=TRUE, xrange=p$x, yrange=p$y, replace.colors=list('#B.+'='#FF000033'), border='red')
Add a gradient legend to a contour plot (or other plot) to indicate the range of values represented by the color palette.
gradientLegend( valRange, color = "terrain", nCol = 30, pos = 0.875, side = 4, dec = NULL, length = 0.25, depth = 0.05, inside = FALSE, coords = FALSE, pos.num = NULL, n.seg = 1, border.col = "black", tick.col = NULL, fit.margin = TRUE, ... )
gradientLegend( valRange, color = "terrain", nCol = 30, pos = 0.875, side = 4, dec = NULL, length = 0.25, depth = 0.05, inside = FALSE, coords = FALSE, pos.num = NULL, n.seg = 1, border.col = "black", tick.col = NULL, fit.margin = TRUE, ... )
valRange |
Range of the values that is represented by the color palette. Normally two value-vector. If a larger vector is provided, only the min and max values are being used. |
color |
Name of color palette to use ('topo', 'terrain', 'heat',
'rainbow'). Custom color palettes can also be provided, but then the
argument |
nCol |
Number of colors in the color palette. |
pos |
A number indicating the position on the axis in proportion.
Using the arguments |
side |
Which axis to choose: 1=bottom, 2=left, 3=top, 4=right. Default is 4. |
dec |
Number of decimals for rounding the numbers, set to NULL on default (no rounding). |
length |
Number, indicating the width of the legend as proportion with
respect to the axis indicated by |
depth |
Number, indicating the height of the legend as proportion
with respect to the axis perpendicular to |
inside |
Logical: whether or not to plot the legend inside or outside
the plot area.
Note: when |
coords |
Logical: whether or not |
pos.num |
Numeric value, indicating the position of the numbers with respect to the tick marks. 1=bottom, 2=left, 3=top, 4=right. |
n.seg |
Number of ticks and markers on the scale. Defaults to 1.
If vector is provided instead of number, all numbers are considered as
marker values on the scale provided by |
border.col |
Color of the border (if NA border is omitted). |
tick.col |
Color of the tick marks. Defaults to |
fit.margin |
Logical: whether the labels of the gradient legend should be forced to fit in the margin or not. |
... |
Other parameters for the marker labels
(see |
Jacolien van Rij
Other Functions for plotting:
addInterval()
,
add_bars()
,
add_n_points()
,
alphaPalette()
,
alpha()
,
check_normaldist()
,
color_contour()
,
dotplot_error()
,
drawDevArrows()
,
emptyPlot()
,
errorBars()
,
fill_area()
,
getCoords()
,
getFigCoords()
,
getProps()
,
legend_margin()
,
marginDensityPlot()
,
plot_error()
,
plot_image()
,
plotsurface()
,
sortBoxplot()
# empty plot: emptyPlot(1,1, main='Test plot', axes=FALSE) box() # legend on outside of plotregion: gradientLegend(valRange=c(-14,14), pos=.5, side=1) gradientLegend(valRange=c(-14,14), pos=.5, side=2) gradientLegend(valRange=c(-14,14), pos=.5, side=3) gradientLegend(valRange=c(-14,14), pos=.5, side=4) # legend on inside of plotregion: gradientLegend(valRange=c(-14,14), pos=.5, side=1, inside=TRUE) gradientLegend(valRange=c(-14,14), pos=.5, side=2, inside=TRUE) gradientLegend(valRange=c(-14,14), pos=.5, side=3, inside=TRUE) gradientLegend(valRange=c(-14,14), pos=.5, side=4, inside=TRUE) # empty plot: emptyPlot(1,1, main='Test plot', axes=FALSE) box() # number of segments: gradientLegend(valRange=c(-14,14), n.seg=3, pos=.5, side=1) gradientLegend(valRange=c(-14,14), n.seg=c(-3,5), pos=.5, side=1, inside=TRUE) # This produces a warning, as there is no space for labels here: ## Not run: gradientLegend(valRange=c(-14.235,14.2), pos=.5, n.seg = c(-7,0), side=4) ## End(Not run) # different solutions: # 1. adjust range (make sure also to adjust the range in the plot, # for example by changing zlim) emptyPlot(1,1, main='Test plot') gradientLegend(valRange=c(-14,14), n.seg = c(-7,0), side=4) # 2. reduce number of decimals: emptyPlot(1,1, main='Test plot') gradientLegend(valRange=c(-14.235,14.2), n.seg = c(-7,0), dec=1, side=4) # 3. change labels to inside plot window: emptyPlot(1,1, main='Test plot') gradientLegend(valRange=c(-14.235,14.2), n.seg = c(-7,0), dec=1, side=4, inside=TRUE) # 4. increase right margin: oldmar <- par()$mar par(mar=c(5.1,3.1,4.1,4.1)) emptyPlot(1,1, main='Test plot') gradientLegend(valRange=c(-14.235,14.2), dec=2, n.seg = c(-7,0), side=4) par(mar=oldmar) # return old values # 5. change label position: emptyPlot(1,1, main='Test plot') gradientLegend(valRange=c(-14.235,14.2), dec=2, n.seg = c(-7,0), side=4, pos.num=2) gradientLegend(valRange=c(-14.235,14.2), dec=2, n.seg = c(-7,0), side=4, pos.num=1, pos=.5) # 6. change legend position and length: emptyPlot(1,1, main='Test plot') gradientLegend(valRange=c(-14.235,14.2), dec=2, n.seg = c(-7,0), side=3, length=.5, pos=.75) # change border color (and font color too!) gradientLegend(valRange=c(-14,14),pos=.75, length=.5, color=alphaPalette('white', f.seq=seq(0,1, by=.1)), border.col=alpha('gray')) # when defining custom points, it is still important to specify side: gradientLegend(valRange=c(-14,14), pos=c(.5,.25,.7,-.05), coords=TRUE, border.col='red', side=1) gradientLegend(valRange=c(-14,14), pos=c(.5,.25,.7,-.05), coords=TRUE, border.col='red', side=2)
# empty plot: emptyPlot(1,1, main='Test plot', axes=FALSE) box() # legend on outside of plotregion: gradientLegend(valRange=c(-14,14), pos=.5, side=1) gradientLegend(valRange=c(-14,14), pos=.5, side=2) gradientLegend(valRange=c(-14,14), pos=.5, side=3) gradientLegend(valRange=c(-14,14), pos=.5, side=4) # legend on inside of plotregion: gradientLegend(valRange=c(-14,14), pos=.5, side=1, inside=TRUE) gradientLegend(valRange=c(-14,14), pos=.5, side=2, inside=TRUE) gradientLegend(valRange=c(-14,14), pos=.5, side=3, inside=TRUE) gradientLegend(valRange=c(-14,14), pos=.5, side=4, inside=TRUE) # empty plot: emptyPlot(1,1, main='Test plot', axes=FALSE) box() # number of segments: gradientLegend(valRange=c(-14,14), n.seg=3, pos=.5, side=1) gradientLegend(valRange=c(-14,14), n.seg=c(-3,5), pos=.5, side=1, inside=TRUE) # This produces a warning, as there is no space for labels here: ## Not run: gradientLegend(valRange=c(-14.235,14.2), pos=.5, n.seg = c(-7,0), side=4) ## End(Not run) # different solutions: # 1. adjust range (make sure also to adjust the range in the plot, # for example by changing zlim) emptyPlot(1,1, main='Test plot') gradientLegend(valRange=c(-14,14), n.seg = c(-7,0), side=4) # 2. reduce number of decimals: emptyPlot(1,1, main='Test plot') gradientLegend(valRange=c(-14.235,14.2), n.seg = c(-7,0), dec=1, side=4) # 3. change labels to inside plot window: emptyPlot(1,1, main='Test plot') gradientLegend(valRange=c(-14.235,14.2), n.seg = c(-7,0), dec=1, side=4, inside=TRUE) # 4. increase right margin: oldmar <- par()$mar par(mar=c(5.1,3.1,4.1,4.1)) emptyPlot(1,1, main='Test plot') gradientLegend(valRange=c(-14.235,14.2), dec=2, n.seg = c(-7,0), side=4) par(mar=oldmar) # return old values # 5. change label position: emptyPlot(1,1, main='Test plot') gradientLegend(valRange=c(-14.235,14.2), dec=2, n.seg = c(-7,0), side=4, pos.num=2) gradientLegend(valRange=c(-14.235,14.2), dec=2, n.seg = c(-7,0), side=4, pos.num=1, pos=.5) # 6. change legend position and length: emptyPlot(1,1, main='Test plot') gradientLegend(valRange=c(-14.235,14.2), dec=2, n.seg = c(-7,0), side=3, length=.5, pos=.75) # change border color (and font color too!) gradientLegend(valRange=c(-14,14),pos=.75, length=.5, color=alphaPalette('white', f.seq=seq(0,1, by=.1)), border.col=alpha('gray')) # when defining custom points, it is still important to specify side: gradientLegend(valRange=c(-14,14), pos=c(.5,.25,.7,-.05), coords=TRUE, border.col='red', side=1) gradientLegend(valRange=c(-14,14), pos=c(.5,.25,.7,-.05), coords=TRUE, border.col='red', side=2)
Function uses sort.list
to return indices
of of a vector, sorted per group.
group_sort(x, group = NULL, decreasing = FALSE)
group_sort(x, group = NULL, decreasing = FALSE)
x |
A vector to be sorted. |
group |
A names list that specify the different groups to split the data. |
decreasing |
Logical: whether or not the sort order should be decreasing. |
Indices indicating the order of vector x per group.
Jacolien van Rij
Other Utility functions:
findAbsMin()
,
find_n_neighbors()
,
firstLetterCap()
,
getArrowPos()
,
getDec()
,
getRange()
,
getRatioCoords()
,
get_palette()
,
inch2coords()
,
isColor()
,
list2str()
,
move_n_point()
,
orderBoxplot()
,
se()
,
sortGroups()
# example InsectSprays from R datasets InsectSprays$Type <- ifelse(InsectSprays$spray %in% c('A','B', 'F'), 1, 2) ind <- group_sort(InsectSprays$count, group=list(Spray=InsectSprays$spray, Type=InsectSprays$Type)) InsectSprays[ind,] InsectSprays
# example InsectSprays from R datasets InsectSprays$Type <- ifelse(InsectSprays$spray %in% c('A','B', 'F'), 1, 2) ind <- group_sort(InsectSprays$count, group=list(Spray=InsectSprays$spray, Type=InsectSprays$Type)) InsectSprays[ind,] InsectSprays
Map of the Netherlands, png image by Silver Spoon on Wikipedia: https://nl.wikipedia.org/wiki/Bestand:Blank_map_of_the_Netherlands.svg
img
img
A list with 2 elements:
image
Matrix of 599 x 564 representing the image.
col
Vector with colors used in the image.
Jacolien van Rij
Convert device position (inch) to coordinates in current plot region.
inch2coords(xpos, ypos = NULL, simplify = FALSE)
inch2coords(xpos, ypos = NULL, simplify = FALSE)
xpos |
x position in device, inches between position and left side of device. When defined as two-number vector, x- and y-position as measured from bottomleft corner of device. |
ypos |
y position (in inches) from bottom of device. |
simplify |
Logical: whether or not to output a vector instead of a list. |
list or 2-number vector
Other Utility functions:
findAbsMin()
,
find_n_neighbors()
,
firstLetterCap()
,
getArrowPos()
,
getDec()
,
getRange()
,
getRatioCoords()
,
get_palette()
,
group_sort()
,
isColor()
,
list2str()
,
move_n_point()
,
orderBoxplot()
,
se()
,
sortGroups()
Function to check whether all specified colors are actual colors.
isColor(x, return.colors = FALSE)
isColor(x, return.colors = FALSE)
x |
Vector of any of the three kinds of R color specifications,
i.e., either a color name (as listed by
|
return.colors |
Logical: logical values (FALSE, default) or returning colors (TRUE) |
Logical value (or colors)
Jacolien van Rij
Other Utility functions:
findAbsMin()
,
find_n_neighbors()
,
firstLetterCap()
,
getArrowPos()
,
getDec()
,
getRange()
,
getRatioCoords()
,
get_palette()
,
group_sort()
,
inch2coords()
,
list2str()
,
move_n_point()
,
orderBoxplot()
,
se()
,
sortGroups()
# correct color definitions: isColor(c('#FF0000FF', '#00FF00FF', '#0000FFFF')) isColor(c('red', 'steelblue', 'green3')) isColor(c(1,7,28)) # mixtures are possible too: isColor(c('#FF0000FF', 'red', 1, '#FF0000', rgb(.1,0,0))) # return colors: # note that 28 is converted to 4... isColor(c(1,7,28), return.colors=TRUE) isColor(c('#FF0000CC', 'red', 1, '#FF0000'), return.colors=TRUE) # 4 incorrect colors, 1 correct: test <- c('#FH0000', 3, '#FF00991', 'lavendel', '#AABBCCFFF') isColor(test) isColor(test, return.colors=TRUE)
# correct color definitions: isColor(c('#FF0000FF', '#00FF00FF', '#0000FFFF')) isColor(c('red', 'steelblue', 'green3')) isColor(c(1,7,28)) # mixtures are possible too: isColor(c('#FF0000FF', 'red', 1, '#FF0000', rgb(.1,0,0))) # return colors: # note that 28 is converted to 4... isColor(c(1,7,28), return.colors=TRUE) isColor(c('#FF0000CC', 'red', 1, '#FF0000'), return.colors=TRUE) # 4 incorrect colors, 1 correct: test <- c('#FH0000', 3, '#FF00991', 'lavendel', '#AABBCCFFF') isColor(test) isColor(test, return.colors=TRUE)
Add legend with respect to figure instead of plot region.
Wrapper around the function legend
.
legend_margin(x, legend, adj = NULL, ...)
legend_margin(x, legend, adj = NULL, ...)
x |
Text string, the location of the legend relative to the figure region. Single keyword from the list 'bottomright', 'bottom', 'bottomleft', 'left', 'topleft', 'top', 'topright', 'right' and 'center'. |
legend |
Vector with text strings to appear in the legend. |
adj |
Numeric vector of length 1 or 2; the string adjustment for legend text. |
... |
Other parameters for specifying the legend
(see |
Jacolien van Rij
Other Functions for plotting:
addInterval()
,
add_bars()
,
add_n_points()
,
alphaPalette()
,
alpha()
,
check_normaldist()
,
color_contour()
,
dotplot_error()
,
drawDevArrows()
,
emptyPlot()
,
errorBars()
,
fill_area()
,
getCoords()
,
getFigCoords()
,
getProps()
,
gradientLegend()
,
marginDensityPlot()
,
plot_error()
,
plot_image()
,
plotsurface()
,
sortBoxplot()
plot(cars$speed, cars$dist, pch=16) legend_margin('topleft', legend=c('points'), pch=16) # compare with default legend: legend('topleft', legend=c('points'), pch=16)
plot(cars$speed, cars$dist, pch=16) legend_margin('topleft', legend=c('points'), pch=16) # compare with default legend: legend('topleft', legend=c('points'), pch=16)
Combine list values as string.
list2str(x, inputlist)
list2str(x, inputlist)
x |
A vector with the names or numbers of list elements to be combined. |
inputlist |
A (named) list with information, e.g., graphical parameter settings. |
String
Other Utility functions:
findAbsMin()
,
find_n_neighbors()
,
firstLetterCap()
,
getArrowPos()
,
getDec()
,
getRange()
,
getRatioCoords()
,
get_palette()
,
group_sort()
,
inch2coords()
,
isColor()
,
move_n_point()
,
orderBoxplot()
,
se()
,
sortGroups()
test <- list(a=c(1,2,3), b='a', c=c(TRUE, FALSE), d='test') list2str(c('a','c', 'd'), test)
test <- list(a=c(1,2,3), b='a', c=c(TRUE, FALSE), d='test') list2str(c('a','c', 'd'), test)
Plot density of distribution in margins of the plot.
marginDensityPlot( x, y = NULL, side, from = NULL, scale = 1, maxDensityValue = NULL, allDensities = NULL, plot = TRUE, ... )
marginDensityPlot( x, y = NULL, side, from = NULL, scale = 1, maxDensityValue = NULL, allDensities = NULL, plot = TRUE, ... )
x |
Density object, or vector with x-values. |
y |
If |
side |
Number: 1 = bottom, 2 = left, 3 = top, 4 = left |
from |
A number indicating the starting position (bottom) of the density plot. Measured in plot coordinates. Defaults to NULL, which indicate that the border of the plot is taken as the base of the density plot. |
scale |
Scale of the density plot. By default set to 1, which is the size of the margin region. |
maxDensityValue |
Number for scaling the density axis. Default is NULL (automatic scaling fitting the d) |
allDensities |
List with other density objects to determine the plotting scale such that they all fit. Defaults to NULL. |
plot |
Logical: whether to plot the density (default) or not. |
... |
Optional arguments for the lines and fill_area. See |
Jacolien van Rij
Other Functions for plotting:
addInterval()
,
add_bars()
,
add_n_points()
,
alphaPalette()
,
alpha()
,
check_normaldist()
,
color_contour()
,
dotplot_error()
,
drawDevArrows()
,
emptyPlot()
,
errorBars()
,
fill_area()
,
getCoords()
,
getFigCoords()
,
getProps()
,
gradientLegend()
,
legend_margin()
,
plot_error()
,
plot_image()
,
plotsurface()
,
sortBoxplot()
# density of a random sample from normal distribution: val1 <- qnorm(ppoints(500)) val2 <- qt(ppoints(500), df = 2) dens1 <- density(val1) dens2 <- density(val2) # setup plot window: par(mfrow=c(1,1), cex=1.1) # increase margin oldmar <- par()$mar par(mar=oldmar + c(0,0,0,4)) # plot qqnorm qqnorm(val2, main='t distribution', pch='*', col='steelblue', xlim=c(-3,3), bty='n') qqline(val1) abline(h=0, col=alpha('gray')) abline(v=0, col=alpha('gray')) # filled distribution in right margin: marginDensityPlot(dens2, side=4, allDensities=list(dens1, dens2), col='steelblue',lwd=2) # add lines: marginDensityPlot(dens2, side=4, allDensities=list(dens1, dens2), col='steelblue',density=25, lwd=2) # compare to normal: marginDensityPlot(dens1, side=4, allDensities=list(dens1, dens2), col=NA, border=1) # Other sides are also possible: marginDensityPlot(dens1, side=3, allDensities=list(dens1, dens2), col=NA, border=alpha(1), lwd=2) marginDensityPlot(dens2, side=3, allDensities=list(dens1, dens2), col=NA, border=alpha('steelblue'), lwd=3) # adjust the starting point with argument 'from' to bottom of plot: marginDensityPlot(dens1, side=3, from=getCoords(0, side=2), lwd=2) marginDensityPlot(dens2, side=3, col='steelblue', from=getCoords(0, side=2), lwd=2, maxDensityValue=2*max(dens2$y)) legend(getFigCoords('p')[2], getFigCoords('p')[3], yjust=0, legend=c('t distribution', 'Gaussian'), fill=c('steelblue', 'black'), cex=.75, xpd=TRUE, bty='n')
# density of a random sample from normal distribution: val1 <- qnorm(ppoints(500)) val2 <- qt(ppoints(500), df = 2) dens1 <- density(val1) dens2 <- density(val2) # setup plot window: par(mfrow=c(1,1), cex=1.1) # increase margin oldmar <- par()$mar par(mar=oldmar + c(0,0,0,4)) # plot qqnorm qqnorm(val2, main='t distribution', pch='*', col='steelblue', xlim=c(-3,3), bty='n') qqline(val1) abline(h=0, col=alpha('gray')) abline(v=0, col=alpha('gray')) # filled distribution in right margin: marginDensityPlot(dens2, side=4, allDensities=list(dens1, dens2), col='steelblue',lwd=2) # add lines: marginDensityPlot(dens2, side=4, allDensities=list(dens1, dens2), col='steelblue',density=25, lwd=2) # compare to normal: marginDensityPlot(dens1, side=4, allDensities=list(dens1, dens2), col=NA, border=1) # Other sides are also possible: marginDensityPlot(dens1, side=3, allDensities=list(dens1, dens2), col=NA, border=alpha(1), lwd=2) marginDensityPlot(dens2, side=3, allDensities=list(dens1, dens2), col=NA, border=alpha('steelblue'), lwd=3) # adjust the starting point with argument 'from' to bottom of plot: marginDensityPlot(dens1, side=3, from=getCoords(0, side=2), lwd=2) marginDensityPlot(dens2, side=3, col='steelblue', from=getCoords(0, side=2), lwd=2, maxDensityValue=2*max(dens2$y)) legend(getFigCoords('p')[2], getFigCoords('p')[3], yjust=0, legend=c('t distribution', 'Gaussian'), fill=c('steelblue', 'black'), cex=.75, xpd=TRUE, bty='n')
Move a vector n elements forward or backward.
move_n_point(x, n = 1, na_value = NA)
move_n_point(x, n = 1, na_value = NA)
x |
A vector. |
n |
Number indicating how many steps the vector should shift forward (N > 0) or backward (n < 0). |
na_value |
The value to replace the empty cells with (e.g., the first or last points). Defaults to NA. |
A vector with the same length of x
, all moved n
steps.
Jacolien van Rij
Other Utility functions:
findAbsMin()
,
find_n_neighbors()
,
firstLetterCap()
,
getArrowPos()
,
getDec()
,
getRange()
,
getRatioCoords()
,
get_palette()
,
group_sort()
,
inch2coords()
,
isColor()
,
list2str()
,
orderBoxplot()
,
se()
,
sortGroups()
(x <- -10:30) prev <- move_n_point(x) change <- x - prev post5 <- move_n_point(x, n=-5) emptyPlot(length(x), range(x)) lines(x) lines(prev, col='red') lines(post5, col='blue')
(x <- -10:30) prev <- move_n_point(x) change <- x - prev post5 <- move_n_point(x, n=-5) emptyPlot(length(x), range(x)) lines(x) lines(prev, col='red') lines(post5, col='blue')
Order boxplot stats following a given ordering.
orderBoxplot(stats, idx)
orderBoxplot(stats, idx)
stats |
List with information produced by a box-and-whisker plot. |
idx |
Order of group levels. |
The ordered stats.
Jacolien van Rij
Other Utility functions:
findAbsMin()
,
find_n_neighbors()
,
firstLetterCap()
,
getArrowPos()
,
getDec()
,
getRange()
,
getRatioCoords()
,
get_palette()
,
group_sort()
,
inch2coords()
,
isColor()
,
list2str()
,
move_n_point()
,
se()
,
sortGroups()
head(ToothGrowth) # sort on basis of mean length: bp <- boxplot(len ~ dose:supp, data = ToothGrowth, plot=FALSE) idx <- sortGroups(len ~ dose:supp, data = ToothGrowth) bp2 <- orderBoxplot(bp, idx) # compare: bp$names bp2$names
head(ToothGrowth) # sort on basis of mean length: bp <- boxplot(len ~ dose:supp, data = ToothGrowth, plot=FALSE) idx <- sortGroups(len ~ dose:supp, data = ToothGrowth) bp2 <- orderBoxplot(bp, idx) # compare: bp$names bp2$names
Plot line with confidence intervals.
plot_error( x, fit, se.fit, se.fit2 = NULL, shade = FALSE, f = 1, col = "black", ci.lty = NULL, ci.lwd = NULL, border = FALSE, alpha = 0.25, ... )
plot_error( x, fit, se.fit, se.fit2 = NULL, shade = FALSE, f = 1, col = "black", ci.lty = NULL, ci.lwd = NULL, border = FALSE, alpha = 0.25, ... )
x |
Vector with values on x-axis. |
fit |
Vector with values on y-axis. |
se.fit |
Vector with standard error; or when |
se.fit2 |
Optional: lower values confidence interval. |
shade |
Logical: whether or not to produce shaded regions as confidence bands. |
f |
Factor for converting standard error in confidence intervals. Defaults to 1. Use 1.96 for 95% CI, and 2.58 for 99% CI. |
col |
Color for lines and confindence bands. |
ci.lty |
Line type to be used for the error lines, see
|
ci.lwd |
Line type to be used for the error lines, see
|
border |
The color to draw the border for the shaded confidence interval. The default, FALSE, omits borders. |
alpha |
Transparency of shaded area. Number between 0 (completely transparent) and 1 (not transparent). |
... |
Optional arguments for the lines and shaded area. |
Jacolien van Rij
Other Functions for plotting:
addInterval()
,
add_bars()
,
add_n_points()
,
alphaPalette()
,
alpha()
,
check_normaldist()
,
color_contour()
,
dotplot_error()
,
drawDevArrows()
,
emptyPlot()
,
errorBars()
,
fill_area()
,
getCoords()
,
getFigCoords()
,
getProps()
,
gradientLegend()
,
legend_margin()
,
marginDensityPlot()
,
plot_image()
,
plotsurface()
,
sortBoxplot()
# generate some data: x <- -10:20 y <- 0.3*(x - 3)^2 + rnorm(length(x)) s <- 0.2*abs(100-y + rnorm(length(x))) # Plot line and standard deviation: emptyPlot(range(x), range(y), h0=0) plot_error(x, y, s) # Change layout: emptyPlot(range(x), range(y), h0=0) plot_error(x, y, s, shade=TRUE, lty=3, lwd=3) # Use of se.fit2 for asymmetrical error bars: cu <- y + .65*s cl <- y - s emptyPlot(range(x), range(y), h0=0) plot_error(x, y, s, shade=TRUE) plot_error(x, y, se.fit=cu, se.fit2=cl, col='red', shade=TRUE) # Some layout options: emptyPlot(range(x), range(y), h0=0) plot_error(x, y, s, lty=3, lwd=1, ci.lty=1, ci.lwd=3) emptyPlot(range(x), range(y), h0=0) plot_error(x, y, s, shade=TRUE, lty=3, lwd=3) emptyPlot(range(x), range(y), h0=0) plot_error(x, y, s, shade=TRUE, lty=1, lwd=3, ci.lwd=3, border='red') emptyPlot(range(x), range(y), h0=0) plot_error(x, y, s, shade=TRUE, lty=1, lwd=3, density=10, ci.lwd=3)
# generate some data: x <- -10:20 y <- 0.3*(x - 3)^2 + rnorm(length(x)) s <- 0.2*abs(100-y + rnorm(length(x))) # Plot line and standard deviation: emptyPlot(range(x), range(y), h0=0) plot_error(x, y, s) # Change layout: emptyPlot(range(x), range(y), h0=0) plot_error(x, y, s, shade=TRUE, lty=3, lwd=3) # Use of se.fit2 for asymmetrical error bars: cu <- y + .65*s cl <- y - s emptyPlot(range(x), range(y), h0=0) plot_error(x, y, s, shade=TRUE) plot_error(x, y, se.fit=cu, se.fit2=cl, col='red', shade=TRUE) # Some layout options: emptyPlot(range(x), range(y), h0=0) plot_error(x, y, s, lty=3, lwd=1, ci.lty=1, ci.lwd=3) emptyPlot(range(x), range(y), h0=0) plot_error(x, y, s, shade=TRUE, lty=3, lwd=3) emptyPlot(range(x), range(y), h0=0) plot_error(x, y, s, shade=TRUE, lty=1, lwd=3, ci.lwd=3, border='red') emptyPlot(range(x), range(y), h0=0) plot_error(x, y, s, shade=TRUE, lty=1, lwd=3, density=10, ci.lwd=3)
Add images to plots.
plot_image( img, type = "image", col = NULL, show.axes = FALSE, xrange = c(0, 1), yrange = c(0, 1), keep.ratio = FALSE, adj = 0, fill.plotregion = FALSE, replace.colors = NULL, add = FALSE, interpolate = TRUE, ... )
plot_image( img, type = "image", col = NULL, show.axes = FALSE, xrange = c(0, 1), yrange = c(0, 1), keep.ratio = FALSE, adj = 0, fill.plotregion = FALSE, replace.colors = NULL, add = FALSE, interpolate = TRUE, ... )
img |
Matrix or image object (list with 'image', a matrix, and 'col', a vector with color values), or a string indicating the filename of an image to read. |
type |
String, 'image' (default), 'png', 'jpeg', 'gif' |
col |
Vector with colors. |
show.axes |
Logical: whether or not to plot the axes. |
xrange |
Two-value vector providing the xleft and xright coordinate values of the picture. Default set to c(0,1). |
yrange |
Two-value vector providing the ybottom and ytop coordinate values of the picture. Default set to c(0,1). |
keep.ratio |
Logical: whether or not to keep the original picture ratio. |
adj |
Numeric value indicating the position of the shortest picture
side with respect to |
fill.plotregion |
Logical: whether or not to fill the complete plot region. Defaults to FALSE. |
replace.colors |
Named list for replacing colors. The names are the colors (in hexadecimal values), or regular expressions matching colors. The values are the replacements. |
add |
Logical: whether or not to add the plot to the current plot. |
interpolate |
Logical: a logical vector (or scalar) indicating whether to apply linear interpolation to the image when drawing. |
... |
Other arguments for plotting, see |
Optionally returns
Jacolien van Rij
Other Functions for plotting:
addInterval()
,
add_bars()
,
add_n_points()
,
alphaPalette()
,
alpha()
,
check_normaldist()
,
color_contour()
,
dotplot_error()
,
drawDevArrows()
,
emptyPlot()
,
errorBars()
,
fill_area()
,
getCoords()
,
getFigCoords()
,
getProps()
,
gradientLegend()
,
legend_margin()
,
marginDensityPlot()
,
plot_error()
,
plotsurface()
,
sortBoxplot()
# see Volcano example at help(image) # create image object: myimg <- list(image=volcano-min(volcano), col=terrain.colors(max(volcano)-min(volcano))) # create emoty plot window: emptyPlot(1,1, main='Volcano images') # add image topleft corner: plot_image(img=myimg, xrange=c(0,.25), yrange=c(.75,1), add=TRUE) # add transparent image as overlay: myimg$col <- alpha(myimg$col, f=.25) plot_image(img=myimg, add=TRUE, fill.plotregion=TRUE, bty='n') # add image: myimg$col <- topo.colors(max(myimg$image)) plot_image(img=myimg, xrange=c(0.125,.375), yrange=c(.5,.875), add=TRUE) # add some points and lines: points(runif(10,0,1), runif(10,0,1), type='o') # keep ratio: emptyPlot(1,1, main='Volcano images') # I would like to add an image in the following field: rect(xleft=0, xright=.5, ybottom=0, ytop=.3, col='gray', border=NA) # add image with keep.ratio=true plot_image(img=myimg, xrange=c(0,.5), yrange=c(0,.3), add=TRUE, keep.ratio=TRUE, border=NA) # as y-side is longest, this side will be fitted in # the rectangle and the x position adjusted with adj: plot_image(img=myimg, xrange=c(0,.5), yrange=c(0,.3), add=TRUE, keep.ratio=TRUE, border=2, adj=0.5) plot_image(img=myimg, xrange=c(0,.5), yrange=c(0,.3), add=TRUE, keep.ratio=TRUE, border=3, adj=1) # keep.ratio and border: plot_image(img=myimg, xrange=c(0,1), yrange=c(0,1), keep.ratio=TRUE, adj=0.5) plot_image(img=myimg, xrange=c(0,.5), yrange=c(0,1), keep.ratio=TRUE, adj=0.5) emptyPlot(1,1, axes=FALSE) plot_image(img=myimg, xrange=c(0,1), yrange=c(0,1), add=TRUE, keep.ratio=TRUE, adj=0.5)
# see Volcano example at help(image) # create image object: myimg <- list(image=volcano-min(volcano), col=terrain.colors(max(volcano)-min(volcano))) # create emoty plot window: emptyPlot(1,1, main='Volcano images') # add image topleft corner: plot_image(img=myimg, xrange=c(0,.25), yrange=c(.75,1), add=TRUE) # add transparent image as overlay: myimg$col <- alpha(myimg$col, f=.25) plot_image(img=myimg, add=TRUE, fill.plotregion=TRUE, bty='n') # add image: myimg$col <- topo.colors(max(myimg$image)) plot_image(img=myimg, xrange=c(0.125,.375), yrange=c(.5,.875), add=TRUE) # add some points and lines: points(runif(10,0,1), runif(10,0,1), type='o') # keep ratio: emptyPlot(1,1, main='Volcano images') # I would like to add an image in the following field: rect(xleft=0, xright=.5, ybottom=0, ytop=.3, col='gray', border=NA) # add image with keep.ratio=true plot_image(img=myimg, xrange=c(0,.5), yrange=c(0,.3), add=TRUE, keep.ratio=TRUE, border=NA) # as y-side is longest, this side will be fitted in # the rectangle and the x position adjusted with adj: plot_image(img=myimg, xrange=c(0,.5), yrange=c(0,.3), add=TRUE, keep.ratio=TRUE, border=2, adj=0.5) plot_image(img=myimg, xrange=c(0,.5), yrange=c(0,.3), add=TRUE, keep.ratio=TRUE, border=3, adj=1) # keep.ratio and border: plot_image(img=myimg, xrange=c(0,1), yrange=c(0,1), keep.ratio=TRUE, adj=0.5) plot_image(img=myimg, xrange=c(0,.5), yrange=c(0,1), keep.ratio=TRUE, adj=0.5) emptyPlot(1,1, axes=FALSE) plot_image(img=myimg, xrange=c(0,1), yrange=c(0,1), add=TRUE, keep.ratio=TRUE, adj=0.5)
This function uses rasterImage
to
indicate which points in the surface are not significantly different from
zero. Note that the shape of these non-significant regions depends on the
number of data points (often specified with n.grid
).
plot_signifArea(data, view, predictor = NULL, valCI, col = 1, alpha = 0.5, ...)
plot_signifArea(data, view, predictor = NULL, valCI, col = 1, alpha = 0.5, ...)
data |
Data frame with plot data. A data frame needs to have a
column with x values, a column with y values (specified in |
view |
A vector of length 2 with the names or numbers of the columns to plot on the x axis and y axis respectively. |
predictor |
The name of the column in the data frame
|
valCI |
The name of the column in the data frame
|
col |
Color for the nonsignificant areas. |
alpha |
Level of transparency, number between 0 (transparent) and 1 (no transparency) |
... |
Optional parameters for |
Jacolien van Rij
# From the package graphics, see help(image): x <- 10*(1:nrow(volcano)) y <- 10*(1:ncol(volcano)) tmp <- data.frame(value = (as.vector(volcano) - 120), x = 10*rep(1:nrow(volcano), ncol(volcano)), y = 10*rep(1:ncol(volcano), each=nrow(volcano)), CI = rep(20, nrow(volcano)*ncol(volcano))) plotsurface(tmp, view=c('x', 'y'), predictor='value', main='Maunga Whau Volcano') plot_signifArea(tmp, view=c('x', 'y'), predictor='value', valCI='CI') # change color: plotsurface(tmp, view=c('x', 'y'), predictor='value', main='Maunga Whau Volcano') plot_signifArea(tmp, view=c('x', 'y'), predictor='value', valCI='CI', col='red') # or completely remove 'nonsignificant' area: plot_signifArea(tmp, view=c('x', 'y'), predictor='value', valCI='CI', col='white', alpha=1)
# From the package graphics, see help(image): x <- 10*(1:nrow(volcano)) y <- 10*(1:ncol(volcano)) tmp <- data.frame(value = (as.vector(volcano) - 120), x = 10*rep(1:nrow(volcano), ncol(volcano)), y = 10*rep(1:ncol(volcano), each=nrow(volcano)), CI = rep(20, nrow(volcano)*ncol(volcano))) plotsurface(tmp, view=c('x', 'y'), predictor='value', main='Maunga Whau Volcano') plot_signifArea(tmp, view=c('x', 'y'), predictor='value', valCI='CI') # change color: plotsurface(tmp, view=c('x', 'y'), predictor='value', main='Maunga Whau Volcano') plot_signifArea(tmp, view=c('x', 'y'), predictor='value', valCI='CI', col='red') # or completely remove 'nonsignificant' area: plot_signifArea(tmp, view=c('x', 'y'), predictor='value', valCI='CI', col='white', alpha=1)
This package provides a set of simple tools for building plots incrementally, starting with an empty plot region, and adding bars, data points, regression lines, error bars, gradient legends, density distributions in the margins, and even pictures. The package builds further on R graphics by simply combining functions and settings in order to reduce the amount of code to produce for the user. As a result, the package does not use formula input or special syntax, but can be used in combination with default R plot functions.
Note: Most of the functions were part of the package itsadug, which is now
split in two packages: 1. the package itsadug
, which contains the
core functions for visualizing and evaluating nonlinear regression models,
and 2. the package plotfunctions
, which contains more general plot
functions.
See vignette(package='plotfunctions', 'plotfunctions')
for an
overview with examples.
emptyPlot
generates an empty plot.
plot_error
adds line with (shaded) confidence interval.
add_bars
adds bars to a (bar)plot.
errorBars
adds confidence intervals to points or bars.
color_contour
and plotsurface
are
wrappers around image
and
contour
for making easily colored surface plots
for interactions with two (or more) continuous predictors.
plot_image
can be used to add a picture to a plot,
or to make a picture the background of a plot.
marginDensityPlot
adds distributions in the margins of
the plot.
check_normaldist
overlays density of data to normal
distribution. Might help with interpretation of QQ-plots that are generally
used to test for normality.
alpha
and alphaPalette
are simple
function to make colors and palettes transparent.
legend_margin
adds a legend in the margins of a plot.
gradientLegend
adds a color legend to a plot.
drawDevArrows
for drawing arrows or lines between
different panels.
getFigCoords
retrieve the cartesian coordinates
relative to the plot axes for given proportions of the plot region or given
proportions of the figure.
#'
A list of all available functions is provided in
help(package='itsadug')
.
Jacolien van Rij
Maintainer: Jacolien van Rij ([email protected])
University of Groningen, The Netherlands & University of Tuebingen, Germany
This function is a wrapper around image
and contour
. See vignette('plotfunctions')
for an example of how you could use image
and
contour
.
plotsurface( data, view, predictor = NULL, valCI = NULL, main = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL, zlim = NULL, col = NULL, color = terrain.colors(50), ci.col = c("green", "red"), nCol = 50, add.color.legend = TRUE, dec = NULL, fit.margin = TRUE, ... )
plotsurface( data, view, predictor = NULL, valCI = NULL, main = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL, zlim = NULL, col = NULL, color = terrain.colors(50), ci.col = c("green", "red"), nCol = 50, add.color.legend = TRUE, dec = NULL, fit.margin = TRUE, ... )
data |
Data frame or list with plot data. A data frame needs to have a column with x values, a column with y values and a column with z values. A list contains a vector with unique x values, a vector with unique y values, and a matrix with z-values. The output of the function fvisgam is an example of a suitable list. |
view |
A vector with the names or numbers of the columns to plot on the x axis and y axis respectively. |
predictor |
Optional: the name of the column in the data frame
|
valCI |
Optional: the name of the column in the data frame
|
main |
Text string, an overall title for the plot. |
xlab |
Label for x axis. Default is name of first |
ylab |
Label for y axis. Default is name of second |
xlim |
x-limits for the plot. |
ylim |
y-limits for the plot. |
zlim |
z-limits for the plot. |
col |
Color for the contour lines and labels. |
color |
The color scheme to use for plots. One of 'topo', 'heat',
'cm', 'terrain', 'gray', 'bwr' (blue-white-red) or 'bw'. Or a list of colors such as that
generated by |
ci.col |
Two-value vector with colors for the lower CI contour lines and for the upper CI contour lines. |
nCol |
The number of colors to use in color schemes. |
add.color.legend |
Logical: whether or not to add a color legend.
Default is TRUE. If FALSE (omitted), one could use the function
|
dec |
Numeric: number of decimals for rounding the color legend.
When NULL (default), no rounding. If -1 (default), automatically determined.
Note: if value = -1 (default), rounding will be applied also when
|
fit.margin |
Logical: whether the labels of the gradient legend should be forced to fit in the margin or not. |
... |
Jacolien van Rij
Other Functions for plotting:
addInterval()
,
add_bars()
,
add_n_points()
,
alphaPalette()
,
alpha()
,
check_normaldist()
,
color_contour()
,
dotplot_error()
,
drawDevArrows()
,
emptyPlot()
,
errorBars()
,
fill_area()
,
getCoords()
,
getFigCoords()
,
getProps()
,
gradientLegend()
,
legend_margin()
,
marginDensityPlot()
,
plot_error()
,
plot_image()
,
sortBoxplot()
# From the package graphics, see help(image): x <- 10*(1:nrow(volcano)) y <- 10*(1:ncol(volcano)) image(x, y, volcano, col = terrain.colors(100), axes = FALSE) contour(x, y, volcano, levels = seq(90, 200, by = 5), add = TRUE, col = 'peru') axis(1, at = seq(100, 800, by = 100)) axis(2, at = seq(100, 600, by = 100)) box() title(main = 'Maunga Whau Volcano', font.main = 4) # now with plot surface: # first convert to data frame tmp <- data.frame(value = as.vector(volcano), x = 10*rep(1:nrow(volcano), ncol(volcano)), y = 10*rep(1:ncol(volcano), each=nrow(volcano))) plotsurface(tmp, view=c('x', 'y'), predictor='value', main='Maunga Whau Volcano') # or with gray scale colors: plotsurface(tmp, view=c('x', 'y'), predictor='value', main='Maunga Whau Volcano', color='gray') # change color range: plotsurface(tmp, view=c('x', 'y'), predictor='value', main='Maunga Whau Volcano', zlim=c(0,200)) #' remove color and color legend: plotsurface(tmp, view=c('x', 'y'), predictor='value', main='Maunga Whau Volcano', color=NULL, col=1, add.color.legend=FALSE)
# From the package graphics, see help(image): x <- 10*(1:nrow(volcano)) y <- 10*(1:ncol(volcano)) image(x, y, volcano, col = terrain.colors(100), axes = FALSE) contour(x, y, volcano, levels = seq(90, 200, by = 5), add = TRUE, col = 'peru') axis(1, at = seq(100, 800, by = 100)) axis(2, at = seq(100, 600, by = 100)) box() title(main = 'Maunga Whau Volcano', font.main = 4) # now with plot surface: # first convert to data frame tmp <- data.frame(value = as.vector(volcano), x = 10*rep(1:nrow(volcano), ncol(volcano)), y = 10*rep(1:ncol(volcano), each=nrow(volcano))) plotsurface(tmp, view=c('x', 'y'), predictor='value', main='Maunga Whau Volcano') # or with gray scale colors: plotsurface(tmp, view=c('x', 'y'), predictor='value', main='Maunga Whau Volcano', color='gray') # change color range: plotsurface(tmp, view=c('x', 'y'), predictor='value', main='Maunga Whau Volcano', zlim=c(0,200)) #' remove color and color legend: plotsurface(tmp, view=c('x', 'y'), predictor='value', main='Maunga Whau Volcano', color=NULL, col=1, add.color.legend=FALSE)
Calculate standard error of the mean.
se(x, na.rm = FALSE)
se(x, na.rm = FALSE)
x |
A vector. |
na.rm |
Logical: whether or not to remove NA values (default set to FALSE - including NAs). |
Standard Error of the mean.
Other Utility functions:
findAbsMin()
,
find_n_neighbors()
,
firstLetterCap()
,
getArrowPos()
,
getDec()
,
getRange()
,
getRatioCoords()
,
get_palette()
,
group_sort()
,
inch2coords()
,
isColor()
,
list2str()
,
move_n_point()
,
orderBoxplot()
,
sortGroups()
# load example data: data(chickwts) str(chickwts) # first calculate means per feeding type: avg <- with(chickwts, tapply(weight, list(feed), mean)) par(cex=1.25) b <- barplot(avg, beside=TRUE, names.arg=FALSE, ylim=c(0,450)) text(b, rep(0, length(b)), labels=names(avg), srt=90, adj=-.25) # calculate mean collapsing over feeding types: abline(h=mean(avg), lwd=1.5, col='red1') # add SE reflecting variation between feeding types: abline(h=mean(avg)+c(-1,1)*se(avg), lty=2, col='red1') text(getCoords(.5), mean(avg)+se(avg), labels=expression('mean' %+-% '1SE'), pos=3, col='red1') # Note that SE makes more sense for experiments with # different groups or participants.
# load example data: data(chickwts) str(chickwts) # first calculate means per feeding type: avg <- with(chickwts, tapply(weight, list(feed), mean)) par(cex=1.25) b <- barplot(avg, beside=TRUE, names.arg=FALSE, ylim=c(0,450)) text(b, rep(0, length(b)), labels=names(avg), srt=90, adj=-.25) # calculate mean collapsing over feeding types: abline(h=mean(avg), lwd=1.5, col='red1') # add SE reflecting variation between feeding types: abline(h=mean(avg)+c(-1,1)*se(avg), lty=2, col='red1') text(getCoords(.5), mean(avg)+se(avg), labels=expression('mean' %+-% '1SE'), pos=3, col='red1') # Note that SE makes more sense for experiments with # different groups or participants.
Produce box-and-whisker plot(s) ordered by function such as
mean or median. Wrapper around boxplot
.
sortBoxplot( formula, data = NULL, decreasing = TRUE, FUN = "median", idx = NULL, col = "gray", ... )
sortBoxplot( formula, data = NULL, decreasing = TRUE, FUN = "median", idx = NULL, col = "gray", ... )
formula |
a formula, such as 'y ~ Condition', where 'y' is a numeric vector of data values to be split into groups according to the grouping variable 'Condition' (usually a factor). |
data |
a data.frame from which the variables in 'formula' should be taken. |
decreasing |
Logical: Indicating whether the sort should be increasing or decreasing. |
FUN |
a function to compute the summary statistics which can be applied to all data subsets. |
idx |
Numeric vector providing the ordering of groups instead of
specifying a function in |
col |
Fill color of the boxplots. Alias for |
... |
Other parameters to adjust the layout of the boxplots.
See |
The ordered stats.
Jacolien van Rij
Other Functions for plotting:
addInterval()
,
add_bars()
,
add_n_points()
,
alphaPalette()
,
alpha()
,
check_normaldist()
,
color_contour()
,
dotplot_error()
,
drawDevArrows()
,
emptyPlot()
,
errorBars()
,
fill_area()
,
getCoords()
,
getFigCoords()
,
getProps()
,
gradientLegend()
,
legend_margin()
,
marginDensityPlot()
,
plot_error()
,
plot_image()
,
plotsurface()
head(ToothGrowth) # sort on basis of mean length: sortBoxplot(len ~ dose:supp, data = ToothGrowth) # sort on basis of median length: sortBoxplot(len ~ dose:supp, data = ToothGrowth, decreasing=FALSE) # on the basis of variation (sd): sortBoxplot(len ~ dose:supp, data = ToothGrowth, FUN='sd', col=alpha(2))
head(ToothGrowth) # sort on basis of mean length: sortBoxplot(len ~ dose:supp, data = ToothGrowth) # sort on basis of median length: sortBoxplot(len ~ dose:supp, data = ToothGrowth, decreasing=FALSE) # on the basis of variation (sd): sortBoxplot(len ~ dose:supp, data = ToothGrowth, FUN='sd', col=alpha(2))
Sort groups based on a function such as mean value or deviation.
sortGroups(formula, FUN = "mean", decreasing = FALSE, ...)
sortGroups(formula, FUN = "mean", decreasing = FALSE, ...)
formula |
Formula for splitting the data |
FUN |
Function to apply to each group |
decreasing |
Logical: sort groups on decreasing values or not (default is FALSE, sorting on increasing values). |
... |
Additional arguments for the function
|
The order of levels.
Jacolien van Rij
Other Utility functions:
findAbsMin()
,
find_n_neighbors()
,
firstLetterCap()
,
getArrowPos()
,
getDec()
,
getRange()
,
getRatioCoords()
,
get_palette()
,
group_sort()
,
inch2coords()
,
isColor()
,
list2str()
,
move_n_point()
,
orderBoxplot()
,
se()
head(ToothGrowth) # sort on basis of mean length: sortGroups(len ~ dose:supp, data = ToothGrowth) labels = levels(interaction(ToothGrowth$dose, ToothGrowth$supp)) labels[sortGroups(len ~ dose:supp, data = ToothGrowth)]
head(ToothGrowth) # sort on basis of mean length: sortGroups(len ~ dose:supp, data = ToothGrowth) labels = levels(interaction(ToothGrowth$dose, ToothGrowth$supp)) labels[sortGroups(len ~ dose:supp, data = ToothGrowth)]